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DEUX EXEMPLES CLASSIQUES DE REPRESENTATION
INTEGRALE

Gustave CHOQUET

A la mémoire de J. Karamata

Nous présentons dans ce travail des démonstrations de deux beaux
théorémes classiques: celui de Bochner-Weil sur les fonctions de type positif,
et celui de Bernstein sur les fonctions totalement monotones.

Ces démonstrations sont basées sur une idée commune, celle de repré-
sentation intégrale des points d’un ensemble convexe au moyen de ses points
extrémaux.

Nous avons cherché, non pas a faire du neuf a tout prix, mais a unifier
et simplifier des démonstrations antérieures ') pour qu’elles deviennent indé-
pendantes d’outillages spécialisés, et soient ainsi plus accessibles. Nos
démonstrations peuvent d’ailleurs étre encore simplifiées si I’on se contente
d’un cadre moins général.

1. RAPPEL DE PROPRIETES DES ENSEMBLES CONVEXES ?)

a) Soit X un convexe compact d’un espace localement convexe séparé E,
et soit Y une partie fermée de X contenant P'ensemble & (X) des points
extrémaux de X.

Il résulte du théoréme de Krein-Milman que pour tout point x de X,
il existe au moins une mesure de Radon u positive de masse 1 portée par Y
et de résultante x, c’est-a-dire que /(x) = u (/) pour tout /e E’. Si pour
tout x € X cette mesure est unique, ¥ = & (X) et X est un simplexe, c’est-
a-dire peut étre considéré comme la base du cdne positif d’un espace vec-
toriel réticulé.

b) Soit maintenant C un cbne convexe d’un espace vectoriel topo-
logique; on appelle chapeau de C tout convexe compact X< C tel que

1).Pou; la démonstration du théoréme de Bochner-Weil, 'idée centrale n’est qu’une simplification
d’une idée introduite par Bucy et Maltese [1].
2) Voir Choquet-Meyer [3].
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(C = X) soit convexe. Tout élément extrémal x#0 de X appartient 2 une
génératrice extrémale de C.

¢) Si C est un cone convexe saillant, métrisable et faiblement complet,
tout point x de C appartient a un chapeau de C, et pour tout borélien B
de C qui rencontre toute génératrice extrémale de C hors de 0, x est résul-
tante d’une mesure positive portée par B. D’autre part si, pour tout x cette
mesure est unique, C est réticulé, et 'application qui & tout x € B associe
la génératrice qui le porte est une bijection de B sur I’ensemble des généra-
trices extrémales de C.

LE THEOREME DE BOCHNER-WEIL POUR UN GROUPE DISCRET

Pour mieux éclairer le mécanisme de la démonstration générale, nous
la ferons d’abord pour les groupes discrets.

Soit donc G un groupe abélien quelconque, et soit f une fonction a
valeurs complexes sui G.

On dit que fest de type positif (ou définie positive) si pour toute famille
finie (x;);.; de points de G, et toute famille («;);.; de nombres complexes,
Y o; &; f (x;—x;) est un nombre réel positif.

i,J

Il est commode d’exprimer tout de suite cette propriété en termes de
convolution, en utilisant les mesures discrétes g = X o; &, et p =2 &;&_ ..
La condition précédente devient alors:

(1) Zai&j,f(xi—xj) = (u=*=m@(f) 20, ouencore (u* u*f)(0) =0.

En particulier, si on prend p = ¢, + cg,, cette condition devient:

(2) (L+1el®) f(0) + ¢f(a) + &f(—a) 2 0.

Si on donne successivement a ¢ les valeurs 0, 1,7, — | f (a)[ / f (a) (quand
f(@)#0), un calcul élémentaire fournit les relations importantes:

(3) fO)z20; f(=x) =f(x) et [f)]=f(0).

Exemple. Appelons caractére de G toute f a valeurs complexes sur G,
bornée, non identiquement nulle, et vérifiant I'identité / (x+y) = f (x) £ ().

Il est immédiat que f(0) = 1, que If(x)[ =1, et que f(—x) =f(x)
pour tout x € G. Il en résulte que:



Z“i &jf<xi'—xj) = (Z O‘if(xi))(z %f(\J)) =2 0;

donc tout caractére est de type positif.

Nous désignerons désormais par K ’ensemble des caracteres sur G.

On notera P I’ensemble des fonctions de type positif sur G; comme P
est évidemment stable par addition et multiplication par des scalaires posi-
tifs, P est un cone convexe de I’espace vectoriel # (G, C) des applications
de G dans C.

L’ensemble P, = { fe P: f(0) = 1} est l'intersection de P avec I’hyper-
plan {f;/(0) = 1}, et comme d’aprés (3), (£ (0) = 0) entraine ( /= 0),
tout f'e P est proportionnel a un élément de P,;. Donc P, est une base de P.

Nous allons déterminer ses éléments extrémaux en utilisant & nouveau
les mesures (e;—+ce,). Remarquons d’abord que si feP, on a aussi

g = /4 * J % fe P pour toute mesure discréte 4; en effet, pour toute u dis-

crete on a:
S——

prpxg = (xp) (A=) xf, dot (u*p=g)(0)=0.
Donc, en prenant successivement . = (g,—ce,) et (g, — cg,), €t en posant
fu = &, * f, on obtient:

g=(=[e)f~cfu-f,eP
h=(+[c)f~cf— & ,eP.

Donc g + /= f, a un facteur >0 prés; si donc fest extrémale dans P,
g et h sont proportionnelles a /, d’ou par soustraction:

g—h=2d+-) = .

En faisant successivement ¢ = 1 et 7 dans cette relation, une combinaison
linéaire évidente montre que:

fa=k(@/f, ouencore f(x—a)=k(a)/f(x).

Supposons f normalis€e, c’est-a-dire /e P;; on a alors k (a) = f(—a);
autrement dit / vérifie I'identité f/ (x—+3) = £ (x) £ (»).

Donc tout élément extrémal de P, est un caractére de G.

Munissons maintenant # (G, C) de la topologie de la convergence
simple. Pour cette topologie, P; et K sont compacts puisque, d'une part,
tout ultrafiltre sur P; ou K converge vers une f bornée, et que, d’autre part,

les relations qui caractérisent les éléments de P; ou K sont stables par
passage a la limite.
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D’apres le rappel 1,, et compte tenu de ce que & (P,) < K, toute fe P,
est résultante d’'une mesure positive = de masse 1 sur K; donc si ’on remarque
que, pour tout x € G, I’application g—g (x) est linéaire et continue sur P
on a, en désignant par [x, ¢] la valeur d’un caractére ¢ au point x:

(4) f(x) = [[x,]dn(®).

Complétons maintenant ce résultat en montrant que la mesure 7 asso-
ciée a f est unique, ce qui entrainera d’aprés 1,, que & (P;) = K: il suffit
pour cela d’observer que sur K, I’ensemble des fonctions continues d : t—|[a, t]
est stable par multiplication et par passage au conjugué, contient la cons-
tante 1, et sépare les points de K, donc est total dans & (K) d’apres le théo-
réeme de Stone-Weierstrass.

Inversement, soit x4 une mesure positive quelconque sur K; u est limite
vague de mesures positives discrétes pu; sur K; et pour tout x e G, f(x) =
= [ [x, t]du (¢) est limite des f;(x) = | [x, #]du; (¢); comme f;e P, on a

A

donc aussi f e P. On peut donc énoncer, en remplagant la notation K par G,:
A
Théoréeme 2. Soit G un groupe abélien discret, et soit G, le groupe
A
compact de ses caractéres. L application u—f, qui a toute pe M ™ (G ) asso-
cie la fonction £, (x) = [ [x, t] du (t) est une bijection sur le céne P des fonc-
tions de type positif sur G.

LE THEOREME DE BOCHNER-WEIL DANS LE CAS GENERAL

A

Soit G un groupe abélien localement compact, et soit G le groupe de

A
ses caractéres continus; G est localement compact pour la topologie de la

convergence uniforme sur tout compact.
A

Pour toute mesure de Radon p = 0 bornée sur G, la fonction f, définie
par f, (x) = [ [x, t]du () est continue et de type positif.

Nous voulons montrer que la réciproque est vraie. La difficulté consiste
en ce que le cone des fonctions de type positif n’a pas de base compacte
pour les topologies usuelles; pour lever cette difficulté, plusieurs voies
s’offrent a nous:

A A A

a) Remarquons que G < G, et que I’application identique ¢ de G dans

A

G, est continue; donc pour toute mesure positive bornée u sur G, ¢ (u) est
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A

une mesure bornée sur G, et f, = f, (.- llest donc naturel de penser que
pour toute fonction f continue et de type positif sur G, la mesure u sur G,
A

qui la représente est en fait portée par G.

Cette voie est élégante, mais nécessite un outillage que nous voulons
éviter ici. Retenons-en seulement une conséquence intéressante: Comme les
applications u—¢ (1) et ¢ (W)—f,, sont injectives, lapplication u—f, I'est
aussi, d’ou l'unicité de la représentation cherchée.

b) Nous utiliserons dans ce travail le fait que la boule unité B de L*
(relatif & la mesure de Haar de G) est compacte pour la topologie faible
o (L®, L"), et nous remplacerons la recherche des fonctions continues de
type positif par celle des fonctions de type positif appartenant a L®.

Désormais nous dirons qu’un élément f de L™ est continu s’il admet
un représentant continu; et dans ce cas, pour tout x € G, f (x) désignera la
valeur de ce représentant au point Xx.

Définition 3. On dit qu’une fe L™ est de type positif si pour toute
velL! on a':

(@*a)(f)=[f(@xa)de=(x*a *f)(0)=0.

On désigne par P le sous-cone convexe fermé de L™ constitué par ces
fonctions, et on pose Q = PN B.

Lorsque f est continue, (feP) entraine (u * u) (f) = 0 pour toute
mesure u discréte; en effet une telle p est limite vague de mesures & densités
continues o, et & supports dans un compact fixe; donc les relations (o, * &)
(/) 2 0 entrainent (1 * i) (f) = 0.

Inversement, si f est continue et vérifie (u * w)(f) = 0 pour toute
mesure u discréte, | f | est bornée, donc cette inégalité s’étend a toute
mesure p bornée, et en particulier a tout produit de la mesure de Haar par
une o« e L.

Lemme 4. L’application f—||f||., est linéaire sur P.

Démonstration. Notons d’abord, ce qu’on montre comme dans le cas
de G discret, que pour toute « € L' et fe P, o * & * f est continue et dans P,
et Papplication f—(x * @ * /) (0) est linéaire.

En particulier, si « > 0 avec || o ||; = 1, on a:

1) Rappelons que & est définie par 9’: (x) = o (—x); que si &, BeLl, o+ 3 est continue et dans L1,
avec ||a , Bl|1=|]a||1 x ||Bl]1, avec égalité si o, 3 = 0.
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(5) o Max @ flly, = (@*xaxf)0) < ISl -

Or si (a;) est une famille de telles fonctions a, qui converge vaguement
vers g, suivant un filtre # (en ce sens que [ @o; dx—¢ (0) pour toute ¢
continue a support compact), «; * «; * f converge vers f dans o (L®, L")
(c’est évident si f continue a support compact, puis passer a la limite).

On a donc Iim || o; * @; * f||., = || f]|-; sinon, suivantun ultrafiltre %

F

plus fin que &# on aurait, d’aprés (5):

11m|| o * &,*f”oo < Hf” 009
U

ce qui est impossible puisque toute boule kB est faiblement fermée dans L”.
Donc I'application /= || f||.,, limite d’applications linéaires, est linéaire.

Lemme 5. 1) Toute fe L” telle quee, * £ = k (a) f pour tout a € G est,
a un facteur constant prés, un caractere continu de G. 2) Tout élément extré-
mal de P, tel que || ||, = 1 est un caractére continu de G.

Démonstration. 1) On suppose f # 0; il existe donc une o continue a
support compact telle que g = f*a # 0. La relation ¢, * f=k (a) f
entraine ¢, * g = k (@) g.

On a g (0) # 0, sinon puisque g est continue, g = 0; donc en prenant «
convenablement on peut supposer g (0) = 1, d’ou l'identité¢ g (x-+y) =
— g (x) g(»); autrement dit g est un caractére continu. En particulier
lg (x)] = 1 pour tout x, d’ou f/geL”, et |k (a)| = 1.

D’autre part, des relationse, * f=k (a)f et ¢, * g = k (a) g on tire
e,*(f/g)=f/g, donc f /g est un élément de L™ invariant par translation;
c’est donc une constante k, d’out f = kg.

2) Ilsuffit d’adapterla démonstration faite pour G discret: Si A = (g,+-ce,)

etsi f€ P,on montre que A * A * f€ P;on en déduit comme précédemment,
que si f est extrémale, on a ¢, * f = k (a) f pour tout a € G, d’ou le résultat
cherché d’apres 1.

Nous désignerons par K le sous-ensemble du convexe compact Q = PnB

A

constitué par les caractéres continus. La bijection canonique ¢ de G sur K

A
est continue; c’est donc une homéomorphie lorsque G est compact. Lorsque

A

G n’est pas compact nous admettrons (ce qui est élémentaire lorsque
G = R" en explicitant les caractéres) que ¢ se prolonge continuement au
A

point @w d’Alexandrov de G, avec ¢ (w) = 0; il en résulte en particulier
que ¢ est encore une homéomorphie, et que K U {0} est compact.
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Théoréme 6. 1) Q est un chapeau de P, et & (Q) = K u {0}. 2) Pour

toute f € P, f est continue et il existe sur G une mesure de Radon unique p = 0

telle que
f(x) = [[x, t]du(t) pour toutxeG.

Démonstration. 1) Lelemme 4 montreque P~ Q = {feP:||f]| > 1}
est convexe, donc Q, déja convexe et compact, est un chapeau de P; c’est
méme un chapeau universel en ce sens que P est réunion des nQ. Les élé-
ments extrémaux de O sont donc 0 et les éléments extrémaux de P de
norme 1; d’aprés le lemme 5, ce sont des caractéres continus de G.

Inversement, si f est un caractére continu de G c’est, d’aprés le théo-
reme 2, un élément extrémal du cone P, des fonctions de type positif sur G
discret; comme PcP, c’est a fortiori un élément extrémal de P, donc

fe&(Q).

2) Tout fe Q, donc aussi tout f'e P, est résultante d’une mesure posi-
tive u portée par le compact K U {0}, ou ce qui revient au méme, portée
par K puisque toute mesure portée par 0 a une résultante nulle.

Autrement dit, pour toute a € L! on a:

ffodx = J(J[x,t]o(x)dx)du(r).

Or soit g la fonction sur G définie par g (x) = [ [x, t]du (¢); elle est
continue et bornée, et la formule de Fubini montre que:

fgadx = [(J[x,t]a(x)dx)du(t),

d’ou | fu dx = [ go dx pour tout a e L', d’on f = g.
L’unicité de u a été démontrée ci-dessus en 3. a.

LE THEOREME DE BERNSTEIN ET SES GENERALISATIONS

Soit f une fonction réelle définie sur un intervalle ouvert I de R, de la
forme ]—o0, a[, ol a est fini ou +o0. Le théoréme de Bernstein affirme
que si f'a des dérivées de tous ordres et si f et ses dérivées sont positives, il
existe une mesure 7 = 0 (d’ailleurs unique) sur R* telle que I'on ait pour
tout x e [:

f(x) = [e¥dn().

Ce théoréme, ainsi que ses généralisations dans diverses directions se
démontre simplement en utilisant la notion d’élément extrémal. Nous appli-
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querons cette méthode a ’étude des fonctions absolument monotones dans
un ouvert de R"; le théoréme de Bernstein en sera un cas particulier.

Définition 7. Soit C un céne convexe de R" d’intérieur non vide; soit
Q un ouvert de R", et soit f une fonction numérique réelle sur Q.

On dit que f est C-absolument monotone si f = 0 et si pour toute famille
finie (a;) d’éléments de C, la fonction u = f (o u est le produit de convolution
des mesures (ey—z¢,,)) est positive en tout point de Q oi elle est définie.

L’ensemble o7 (2, C) des fonctions C-absolument monotones dans Q
est évidemment un cdne convexe de # (2, R), fermé pour la topologie de
la convergence simple, donc faiblement complet dans # (Q, R).

Lemme 8. 1) Toute fonction R*-absolument monotone sur un intervalle
ouvert Q de R est continue.

2) Toute fe o (Q, C) est continue (ot Q et C = R").

3) Toute famille (f,) d’éléments de F (Q, C) qui converge simplement en
tout point d’un sous-ensemble D partout dense de Q, converge uniformément
sur tout compact de 2.

Démonstration. 1) La condition (g,—e¢,) * f = 0 pour a = 0 exprime
que A4, (x)=f(x)—f(x—a)=01lorsque x et (x—a) € 2; donc f est croissante.

La condition (e, —¢,) * (e,—¢,) * f = 0 exprime que 4, (x) est fonction
croissante de x. Donc si f est continue au point x, elle I’est aussi pour tout
y £ x; et comme les points de continuité de f sont partout denses dans Q,
f est continue.

2) Supposons, ce qu’on peut toujours faire en choisissant dans C les
vecteurs u; de la base de R", que R} = C; il s’agit alors de montrer que pour
tout pavé P = [] [, B;]=Q, f est continue sur P.

a) Utilisons le fait que dans P, 4,(x) = f(x) — f (x—a) est fonction
croissante de x; ceci entraine que:

0SB ~fB-a) £ T.(f O —F B-a;u)).

Or f est séparément continue par rapport a chaque variable, donc
(f(B)—f (f—a;u;)) tend vers 0 avec a;, d’ou la continuité sur P au point f.

b) SiToscillation de fdans un voisinage V' de f dans P est < ¢, 'inégalité
0 f(x) —f(x—a) =f(B) —f(f—a) montre qu’elle est < ¢ dans tout
translaté de V contenu dans P.

3) Comme les f; sont croissantes et convergent sur D, on peut les

1

supposer localement uniformément bornées. Si donc le filtre donné est un
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ultrafiltre %, les f; convergent partout dans Q. Leur limite f appartient a
o (@, C), donc est continue. Montrons, avec les notations du (2), que la
convergence est uniforme sur tout pavé Pc Q.

I1 suffit de reprendre les inégalités du (2): Pour tout ¢>0, il existe des
a;>0 tels que 0 < f(f) — f(f—a;u;) < e Les a; étant fixés, il existe
un X e tel que, pour tout ie X on ait [f——fi| < ¢ aux points f et
(B—a; u;). Loscillation de f; est donc plus petite que 3ne dans le petit pave
{x:f—a = x £ p}; elle est donc plus petite que 3ne dans tout translaté
de ce pavé contenu dans P. |

Quand le filtre donné n’est pas un ultrafiltre, la convergence annoncée
a lieu pour tout ultrafiltre % plus fin que &, et comme la limite /' est donnée
sur D, f ne dépend pas de %, d’ou la propriété annoncée pour %.

Lemme 9. Si Q est C-stable, en ce sens que Q — C = Q, tfout élément
extrémal de of (2, C) est de la forme cf, ots c e R™ et f une exponentielle de
la forme f(x) = €' o 1 est une forme linéaire positive sur C.

Démonstration. . Pout tout f définie dans Q et pout tout @ € C, I’hypo-
thése Q@ — C=Q entraine que ¢, * f est partout définie dans Q; il en est
donc de méme de (¢,—¢,) * 1. |

En outre, si fe o (2, C),il en estdeméme de ¢, * fet (¢, —e¢,) * fd’aprés
les relations:

pr (e xf) = eox(urf); (nx(eo—e))*f = p*((eg—e) *f).

Donc si f est extrémal dans le cone o7 (@, C), la relation f = (g, * f) +
+ (eo—¢,) * f montre que pour tout a € C, ¢, * f =k (a) f, ot k (a) est une
constante = 0.

Comme f # 0 on peut supposer, grice au besoin a une translation,‘ que
OeQ et que /(0) # 0; et méme, en multipliant / par une constante, que
/(0) = 1;onendéduitk (@) = f(—a), d’oulidentité f (x—a) = £ (x) f(—a)
pour tout x € Q et tout ae C.

Comme f est continue, un raisonnement élémentaire montre que f est
la restriction a Q d’une exponentielle '™, Enfin, pour tout x € C, on doit
avoir f(—x) < f(0), dou /(x) = 0 sur C.

Théoréme 10. Soit C un cone convexe de R”, d’intérieur non vide ; Soit
C° son polaire ; et soit Q un ouvert C-stable de R™.

1) Pour toute fe o/ (Q, C) il existe une mesure unique m© = 0 sur le
polaire C°, telle que :

(6) f(x) = [e"“du(t).
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2) L’ensemble o/ (Q, C) est identique a [’ensemble des fonctions f indé-
finiment dérivables dans Q dont toutes les dérivées partielles associées a des
vecteurs de C sont positives ; chacune de ces dérivées est convexe et analytique.

3) Pour toute mesure p = 0 sur C°, si I’on note f ’application de R" dans
[0, o] définie par la formule (6), I'ensemble X des x tels que f(x) <o est,
ou bien vide, ou bien convexe et C-stable. Dans ce dernier cas, sur [’ouvert

convexe et C-stable Q = X,' la fonction f est convexe, analytique, et appar-
tient a o4 (2, C). En outre, pour tout ouvert C-stable Q' et toute f' € o/ (Q’, C),
tels que f et f' coincident sur un sous-ouvert de Q N Q', on a Q' <= Q, et f' est
la restriction de f a Q.

Démonstration. 1) Soit D une partie dénombrable et partout dense
de Q2; le lemme 8 montre que sur &7 (2, C) la topologie de la convergence
simple est identique a la topologie de la convergence simple sur D, donc
le cone faiblement complet 7 (2, C) est métrisable.

Or pour tout /e C° la fonction e': x—e'™ appartient 3 & (@, C) et
I'injection [—e' de C° dans &/ (Q, C) est une homéomorphie. Donc I'image
de C° dans o (2, C) est un ensemble borélien qui rencontre toute généra-
trice extrémale de &/ (2, C). Compte tenu de 1, et ce que pour tout x € €2,
I’application f—f (x) est une forme linéaire continue sur & (2, R), il existe
donc une n = 0 sur C vérifiant la relation (6).

Son unicité est immédiate: Supposons, ce qu’on peut toujours faire, que
0 e Q; alors 7 est bornée et son unicité résulte de ce que, si u; désigne une
base de R" contenue dans C, les fonctions de la forme e=*$"#) ou n; € N,
constituent d’aprés le théoréme de Stone-Weierstrass, un ensemble total dans
%, (CO).

De cette unicité de 7 résulte, d’aprés 1., que toute e~ ot ¢ € C,0 est extré-
male dans &7 (2, C).

2) Soit 4 I’ensemble des fonctions indéfiniment dérivables sur Q telles
que, pour tout produit 4 de dérivations associ€es a des vecteurs de C, on
ait Af = 0.

Pour aeC et feAd, on a (g—¢,) *fe A, car A((eg—¢,) *f) =
= (g5—¢,) * Af, qui est positive puisque Af est croissante pour l'ordre
associé¢ a C.

On a donc pu * f = 0 pour tout produit pu d’opérateurs (g, —e¢,), d’ou
fed (2, C).

Inversement toute /'€ o7 (Q, C) admet, d’apres 10. 1, une représentation
intégrale de la forme (6). Un raisonnement, classique dans I’étude de la
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transformation de Laplace, et basé sur la croissance de l’exponentielle,
montre alors que f est indéfiniment dérivable dans Q, et que toutes ses
dérivées partielles s’obtiennent par le calcul de dérivation formelle sous le
signe intégrale. Il en résulte que toutes les dérivées partielles associées a
des vecteurs de C sont poSitives.

Le méme raisonnement classique montre que f est analytique dans Q;
sa convexité est évidente puisque toute e** est convexe.

3) Pour tout 7 e C° la fonction x—e€"* est convexe et croissante (pour
le préordre sur R" défini par C); donc f est aussi convexe (au sens large) et
croissante. L’ensemble X = { x: f(x)<oo} est donc convexe et C-stable.

Si X # @, la C-stabilité de X entraine que le convexe X n’est pas vide,

et est aussi C-stable. Sur I'ouvert Q = X, la fonction f est finie et convexe,
donc continue. Le raisonnement du 10. 2 montre alors que f est analytique
dans Q.

Si Q' est C-stable, 2 n Q' I’est aussi; il est donc connexe. Or fet f étant
analytiques, ’ensemble des x de Q N Q' en lesquels f et /' ont toutes leurs
dérivées égales est a la fois ouvert et fermé relativement a Q N Q’; comme
il n’est pas vide, il est identique a Q N Q'. Ceci démontre la coincidence
de £, f' sur Q n Q'; montrons enfin que Q' < Q: '

Pour tout x € Q U Q’', est défini, ou bien f (x), ou bien /' (x), ou simul-
tanément f (x) et /' (x), avec f(x) = f' (x); soit g (x) ce nombre unique.

La fonction g est définie sur 'ouvert C-stable Q U Q’, et en tout point
ses dérivées partielles relatives a des vecteurs de C sont = 0, donc g e
g (QuQ,C).

Soient respectivement u, v les mesures sur C° qui fournissent les repré-
sentations intégrales de f et g; comme f, g coincident sur Q, on a yu=v
d’aprés 10. 1.

Or [e"*dv ()< sur QU Q, d’ott la méme relation pour u, ce
qui montre que Q' < X, d’ou aussi Q' < Q.

Remarque 11. 1) Le corollaire 13 montrera que toute fe o7 (Q, C) est
analytique, méme lorsque Q n’est pas C-stable. On peut donc étendre la
fin de I’énoncé 10. 3 a ces fonctions sous la forme suivante:

« Pour tout ouvert connexe Q' et toute /' € of (', C) tels que f et f”
coincident sur un sous-ouvert non vide de 2 " Q', ona Q' Q, et /” est la
restriction de fa Q'. »

Pour le voir, on montre que si Q" ¢ Q, on peut agrandir un peu Q pour
obtenir un ouvert C-stable Q" <(Q U Q') et une fonction " € o (Q", C),
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qui coincide avec f sur Q. Il suffit ensuite d’appliquer le méme raisonnement
qu’en 10. 3 pour montrer qu’un tel Q"' ne peut exister.

2) 1l résulte du théoréme 10 que pour tout ouvert C-stable Q, toute

fe s (@, C) se prolonge en une fonction f e &/ (2,C), ou Q2 est 'enveloppe
convexe de Q.
Nous allons maintenant étudier & (Q, C) pour un ouvert Q quelconque.
Théoréme 12. Désignons par P, ['ouvert de R" constitué par les
points a coordonnées >0. Alors, pour tout ouvert non vide Q de la forme

P, (n (x;—P,), les éléments extrémaux de o/ (Q,R?Y) sont les monémes a
i .

coefficients > 0.
Et tout fe o (Q,R]}) est somme d’une série entiére a coefficients = 0.

Démonstration. 1) Pour toute suite o = (o4, o5, ..., &,) d’éléments de
10, 1], et tout x = (x;) € Q, on a aussi («; x;) € Q. Pour tout fe o (2, R})
on désignera par f, la fonction sur Q définie par:

Jo(Xqs o5 xy) = f(00g X050y 00, X,,) .

Les fonctions f, et g, = (f—f,) appartiennent évidemment a o/ (Q, R}),
donc si f est extrémale dans le cone & (2, RY), la relation f=f, + g,
montre que f, = k («) f; autrement dit, pour tout o € (]0, 1])" et tout x € Q,
on a:

f(OCl xl?""anxn) - k(OCl,..., an)f(xla--->xn)*

Comme f est continue (lemme 8), un raisonnement élémentaire montre
alors que f est un produit de la forme a x%! ... xf». Cette fonction est indé-
finiment dérivable par rapport & x; et comme fe .o/ (2, RL), toutes ses
dérivées par rapport a x; sont = 0; ceci ne peut avoir lieu que si p, est un
entier = 0; méme raisonnement pour chaque p;, donc f est un mondme,
avec ¢videmment a> 0.

2) Comme en 10. 2 on vérifie que toute fonction dans Q2 dont les déri-
vées partielles sont positives appartient & o (€2, RY); c’est en particulier le
cas de tout mondme x%! ... xP». Soit M le sous-ensemble dénombrable de
o (Q, R}) constitué¢ par ces mondmes; comme en 10. 1, on peut montrer
que pour tout fe & (2, RY) il existe une mesure positive sur M dont la
résultante est f; autrement dit f est une somme de mondmes a coeflicients
> 0; les propriétés élémentaires des séries entieéres entrainent I'unicité de
ces coefficients. Il en résulte que tout mondme est un élément extrémal de
o (2, R3). "
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Corollaire 13. Pour tout céne convexe C de R" d’intérieur non vide et
tout ouvert Q de R":

1) Toute fe o (2, C) est analytique,
2) o (Q, C) est identique a [’ensemble des fonctions { indéfiniment déri-

vables, dans Q, dont toutes les dérivées partielles ussociées a des vecteurs de C
sont positives.
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