Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 15 (1969)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DEUX EXEMPLES CLASSIQUES DE REPRÉSENTATION

INTÉGRALE

Autor: Choquet, Gustave

DOI: https://doi.org/10.5169/seals-43205

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DEUX EXEMPLES CLASSIQUES DE REPRÉSENTATION INTÉGRALE

Gustave Choquet

A la mémoire de J. Karamata

Nous présentons dans ce travail des démonstrations de deux beaux théorèmes classiques: celui de Bochner-Weil sur les fonctions de type positif, et celui de Bernstein sur les fonctions totalement monotones.

Ces démonstrations sont basées sur une idée commune, celle de représentation intégrale des points d'un ensemble convexe au moyen de ses points extrémaux.

Nous avons cherché, non pas à faire du neuf à tout prix, mais à unifier et simplifier des démonstrations antérieures ¹) pour qu'elles deviennent indépendantes d'outillages spécialisés, et soient ainsi plus accessibles. Nos démonstrations peuvent d'ailleurs être encore simplifiées si l'on se contente d'un cadre moins général.

1. RAPPEL DE PROPRIÉTÉS DES ENSEMBLES CONVEXES 2)

a) Soit X un convexe compact d'un espace localement convexe séparé E, et soit Y une partie fermée de X contenant l'ensemble $\mathscr{E}(X)$ des points extrémaux de X.

Il résulte du théorème de Krein-Milman que pour tout point x de X, il existe au moins une mesure de Radon μ positive de masse 1 portée par Y et de résultante x, c'est-à-dire que $l(x) = \mu(l)$ pour tout $l \in E'$. Si pour tout $x \in X$ cette mesure est unique, $Y = \mathscr{E}(X)$ et X est un simplexe, c'est-à-dire peut être considéré comme la base du cône positif d'un espace vectoriel réticulé.

b) Soit maintenant C un cône convexe d'un espace vectoriel topologique; on appelle chapeau de C tout convexe compact $X \subset C$ tel que

 ¹⁾ Pour la démonstration du théorème de Bochner-Weil, l'idée centrale n'est qu'une simplification d'une idée introduite par Bucy et Maltese [1].
2) Voir Choquet-Meyer [3].

- (C X) soit convexe. Tout élément extrémal $x \neq 0$ de X appartient à une génératrice extrémale de C.
- c) Si C est un cône convexe saillant, métrisable et faiblement complet, tout point x de C appartient à un chapeau de C, et pour tout borélien B de C qui rencontre toute génératrice extrémale de C hors de 0, x est résultante d'une mesure positive portée par B. D'autre part si, pour tout x cette mesure est unique, C est réticulé, et l'application qui à tout $x \in B$ associe la génératrice qui le porte est une bijection de B sur l'ensemble des génératrices extrémales de C.

LE THÉORÈME DE BOCHNER-WEIL POUR UN GROUPE DISCRET

Pour mieux éclairer le mécanisme de la démonstration générale, nous la ferons d'abord pour les groupes discrets.

Soit donc G un groupe abélien quelconque, et soit f une fonction à valeurs complexes sur G.

On dit que f est de type positif (ou définie positive) si pour toute famille finie $(x_i)_{i\in I}$ de points de G, et toute famille $(\alpha_i)_{i\in I}$ de nombres complexes, $\sum_{i,j} \alpha_i \bar{\alpha}_j f(x_i - x_j)$ est un nombre réel positif.

Il est commode d'exprimer tout de suite cette propriété en termes de convolution, en utilisant les mesures discrètes $\mu = \sum \alpha_i \, \varepsilon_{x_i}$ et $\tilde{\mu} = \sum \bar{\alpha}_i \, \varepsilon_{-x_i}$. La condition précédente devient alors:

(1)
$$\sum_{i,j} \alpha_i \, \bar{\alpha}_j f(x_i - x_j) = (\mu * \tilde{\mu})(f) \ge 0, \text{ ou encore } (\mu * \tilde{\mu} * f)(0) \ge 0.$$

En particulier, si on prend $\mu = \varepsilon_0 + c\varepsilon_a$, cette condition devient:

(2)
$$(1+|c|^2) f(0) + cf(a) + \bar{c}f(-a) \ge 0.$$

Si on donne successivement à c les valeurs 0, 1, i, -|f(a)|/f(a) (quand $f(a) \neq 0$), un calcul élémentaire fournit les relations importantes:

(3)
$$f(0) \ge 0$$
; $f(-x) = \overline{f(x)}$ et $|f(x)| \le f(0)$.

Exemple. Appelons caractère de G toute f à valeurs complexes sur G, bornée, non identiquement nulle, et vérifiant l'identité f(x+y) = f(x) f(y).

Il est immédiat que f(0) = 1, que |f(x)| = 1, et que $f(-x) = \overline{f(x)}$ pour tout $x \in G$. Il en résulte que:

$$\sum \alpha_{i} \, \bar{\alpha}_{j} \, f \left(x_{i} - x_{j} \right) \, = \, \left(\sum \alpha_{i} \, f \left(x_{i} \right) \right) \left(\overline{\sum \alpha_{j} \, f \left(x_{j} \right)} \right) \, \geqq \, 0;$$

donc tout caractère est de type positif.

Nous désignerons désormais par K l'ensemble des caractères sur G.

On notera P l'ensemble des fonctions de type positif sur G; comme P est évidemment stable par addition et multiplication par des scalaires positifs, P est un cône convexe de l'espace vectoriel $\mathscr{F}(G, \mathbb{C})$ des applications de G dans \mathbb{C} .

L'ensemble $P_1 = \{ f \in P : f(0) = 1 \}$ est l'intersection de P avec l'hyperplan $\{ f; f(0) = 1 \}$, et comme d'après (3), (f(0) = 0) entraı̂ne (f = 0), tout $f \in P$ est proportionnel à un élément de P_1 . Donc P_1 est une base de P.

Nous allons déterminer ses éléments extrémaux en utilisant à nouveau les mesures $(\varepsilon_0 + c\varepsilon_a)$. Remarquons d'abord que si $f \in P$, on a aussi $g = \lambda * \lambda * f \in P$ pour toute mesure discrète λ ; en effet, pour toute μ discrète on a:

$$\mu * \widetilde{\mu} * g = (\lambda * \mu) \ \widetilde{(\lambda * \mu)} * f, \quad \text{d'où} \quad (\mu * \widetilde{\mu} * g) (0) \ge 0.$$

Donc, en prenant successivement $\lambda = (\varepsilon_0 + c\varepsilon_a)$ et $(\varepsilon_0 - c\varepsilon_a)$, et en posant $f_u = \varepsilon_u * f$, on obtient:

$$g = (1 - |c|^2) f + cf_a + \bar{c}f_{-a} \in P$$
$$h = (1 + |c|^2) f - cf_a - \bar{c}f_{-a} \in P.$$

Donc g + h = f, à un facteur >0 près; si donc f est extrémale dans P, g et h sont proportionnelles à f, d'où par soustraction:

$$g - h = 2 \left(c f_a + \bar{c} f_{-a} \right) = \alpha f$$
.

En faisant successivement c=1 et i dans cette relation, une combinaison linéaire évidente montre que:

$$f_a = k(a) f$$
, ou encore $f(x-a) = k(a) f(x)$.

Supposons f normalisée, c'est-à-dire $f \in P_1$; on a alors k(a) = f(-a); autrement dit f vérifie l'identité f(x+y) = f(x) f(y).

Donc tout élément extrémal de P_1 est un caractère de G.

Munissons maintenant $\mathcal{F}(G, \mathbb{C})$ de la topologie de la convergence simple. Pour cette topologie, P_1 et K sont compacts puisque, d'une part, tout ultrafiltre sur P_1 ou K converge vers une f bornée, et que, d'autre part, les relations qui caractérisent les éléments de P_1 ou K sont stables par passage à la limite.

D'après le rappel 1_a , et compte tenu de ce que $\mathscr{E}(P_1) \subset K$, toute $f \in P_1$ est résultante d'une mesure positive π de masse 1 sur K; donc si l'on remarque que, pour tout $x \in G$, l'application $g \rightarrow g(x)$ est linéaire et continue sur P on a, en désignant par [x, t] la valeur d'un caractère t au point x:

(4)
$$f(x) = \int [x, t] d\pi(t).$$

Complétons maintenant ce résultat en montrant que la mesure π associée à f est unique, ce qui entraînera d'après 1_a , que $\mathscr{E}(P_1) = K$: il suffit pour cela d'observer que sur K, l'ensemble des fonctions continues $\hat{a}: t \to [a, t]$ est stable par multiplication et par passage au conjugué, contient la constante 1, et sépare les points de K, donc est total dans $\mathscr{E}(K)$ d'après le théorème de Stone-Weierstrass.

Inversement, soit μ une mesure positive quelconque sur K; μ est limite vague de mesures positives discrètes μ_i sur K; et pour tout $x \in G$, $f(x) = \int [x, t] d\mu(t)$ est limite des $f_i(x) = \int [x, t] d\mu_i(t)$; comme $f_i \in P$, on a donc aussi $f \in P$. On peut donc énoncer, en remplaçant la notation K par G_d :

Théorème 2. Soit G un groupe abélien discret, et soit G_d le groupe compact de ses caractères. L'application $\mu \to f_\mu$ qui à toute $\mu \in \mathcal{M}^+$ (G_d) associe la fonction $f_\mu(x) = \int [x, t] d\mu(t)$ est une bijection sur le cône P des fonctions de type positif sur G.

LE THÉORÈME DE BOCHNER-WEIL DANS LE CAS GÉNÉRAL

Soit G un groupe abélien localement compact, et soit G le groupe de ses caractères continus; \hat{G} est localement compact pour la topologie de la convergence uniforme sur tout compact.

Pour toute mesure de Radon $\mu \ge 0$ bornée sur G, la fonction f_{μ} définie par $f_{\mu}(x) = \int [x, t] d\mu(t)$ est continue et de type positif.

Nous voulons montrer que la réciproque est vraie. La difficulté consiste en ce que le cône des fonctions de type positif n'a pas de base compacte pour les topologies usuelles; pour lever cette difficulté, plusieurs voies s'offrent à nous:

a) Remarquons que $\hat{G} \subset \hat{G}_d$ et que l'application identique φ de \hat{G} dans \hat{G}_d est continue; donc pour toute mesure positive bornée μ sur \hat{G} , φ (μ) est

une mesure bornée sur \hat{G}_d , et $f_{\mu} = f_{\varphi(\mu)}$. Il est donc naturel de penser que pour toute fonction f continue et de type positif sur G, la mesure μ sur \hat{G}_d qui la représente est en fait portée par \hat{G} .

Cette voie est élégante, mais nécessite un outillage que nous voulons éviter ici. Retenons-en seulement une conséquence intéressante: Comme les applications $\mu \to \varphi$ (μ) et φ (μ) $\to f_{\varphi(\mu)}$ sont injectives, l'application $\mu \to f_{\mu}$ l'est aussi, d'où l'*unicité* de la représentation cherchée.

b) Nous utiliserons dans ce travail le fait que la boule unité B de L^{∞} (relatif à la mesure de Haar de G) est compacte pour la topologie faible $\sigma(L^{\infty}, L^{1})$, et nous remplacerons la recherche des fonctions continues de type positif par celle des fonctions de type positif appartenant à L^{∞} .

Désormais nous dirons qu'un élément f de L^{∞} est continu s'il admet un représentant continu; et dans ce cas, pour tout $x \in G$, f(x) désignera la valeur de ce représentant au point x.

Définition 3. On dit qu'une $f \in L^{\infty}$ est de type positif si pour toute $\alpha \in L^1$ on a^1 :

$$(\alpha * \widetilde{\alpha})(f) = \int f \cdot (\alpha * \widetilde{\alpha}) dx = (\alpha * \widetilde{\alpha} * f)(0) \ge 0.$$

On désigne par P le sous-cône convexe fermé de L^{∞} constitué par ces fonctions, et on pose $Q = P \cap B$.

Lorsque f est continue, $(f \in P)$ entraı̂ne $(\mu * \tilde{\mu})(f) \ge 0$ pour toute mesure μ discrète; en effet une telle μ est limite vague de mesures à densités continues α_n et à supports dans un compact fixe; donc les relations $(\alpha_n * \tilde{\alpha}_n)$ $(f) \ge 0$ entraı̂nent $(\mu * \tilde{\mu})(f) \ge 0$.

Inversement, si f est continue et vérifie $(\mu * \tilde{\mu})(f) \ge 0$ pour toute mesure μ discrète, |f| est bornée, donc cette inégalité s'étend à toute mesure μ bornée, et en particulier à tout produit de la mesure de Haar par une $\alpha \in L^1$.

Lemme 4. L'application $f \rightarrow || f ||_{\infty}$ est linéaire sur P.

Démonstration. Notons d'abord, ce qu'on montre comme dans le cas de G discret, que pour toute $\alpha \in L^1$ et $f \in P$, $\alpha * \widetilde{\alpha} * f$ est continue et dans P, et l'application $f \rightarrow (\alpha * \widetilde{\alpha} * f)$ (0) est linéaire.

En particulier, si $\alpha \ge 0$ avec $||\alpha||_1 = 1$, on a:

¹⁾ Rappelons que $\bar{\alpha}$ est définie par $\bar{\alpha}(x) = \overline{\alpha(-x)}$; que si α , $\beta \in L^1$, $\alpha * \beta$ est continue et dans L^1 , avec $||\alpha * \beta||_1 \le ||\alpha||_1 \times ||\beta||_1$, avec égalité si α , $\beta \ge 0$.

(5)
$$||\alpha * \widetilde{\alpha} * f||_{\infty} = (\alpha * \widetilde{\alpha} * f)(0) \leq ||f||_{\infty}.$$

Or si (α_i) est une famille de telles fonctions α , qui converge vaguement vers ε_0 suivant un filtre \mathscr{F} (en ce sens que $\int \varphi \alpha_i dx \rightarrow \varphi$ (0) pour toute φ continue à support compact), $\alpha_i * \widetilde{\alpha}_i * f$ converge vers f dans $\sigma(L^{\infty}, L^1)$ (c'est évident si f continue à support compact, puis passer à la limite).

On a donc $\lim_{\mathscr{F}} \|\alpha_i * \widetilde{\alpha}_i * f\|_{\infty} = \|f\|_{\infty}$; sinon, suivant un ultrafiltre \mathscr{U} plus fin que \mathscr{F} on aurait, d'après (5):

$$\lim_{\infty} ||\alpha_i * \tilde{\alpha}_i * f||_{\infty} < ||f||_{\infty},$$

ce qui est impossible puisque toute boule kB est faiblement fermée dans L^{∞} . Donc l'application $f \rightarrow ||f||_{\infty}$, limite d'applications linéaires, est linéaire.

Lemme 5. 1) Toute $f \in L^{\infty}$ telle que $\varepsilon_a * f = k$ (a) f pour tout $a \in G$ est, à un facteur constant près, un caractère continu de G. 2) Tout élément extrémal de G, tel que $\|f\|_{\infty} = 1$ est un caractère continu de G.

Démonstration. 1) On suppose $f \neq 0$; il existe donc une α continue à support compact telle que $g = f * \alpha \neq 0$. La relation $\varepsilon_a * f = k(a) f$ entraı̂ne $\varepsilon_a * g = k(a) g$.

On a $g(0) \neq 0$, sinon puisque g est continue, g = 0; donc en prenant α convenablement on peut supposer g(0) = 1, d'où l'identité g(x+y) = g(x)g(y); autrement dit g est un caractère continu. En particulier |g(x)| = 1 pour tout x, d'où $f/g \in L^{\infty}$, et |k(a)| = 1.

D'autre part, des relations $\varepsilon_a * f = k(a) f$ et $\varepsilon_a * g = k(a) g$ on tire $\varepsilon_a * (f/g) = f/g$, donc f/g est un élément de L^{∞} invariant par translation; c'est donc une constante k, d'où f = kg.

2) Il suffit d'adapter la démonstration faite pour G discret : Si $\lambda = (\varepsilon_0 + c\varepsilon_a)$ et si $f \in P$, on montre que $\lambda * \tilde{\lambda} * f \in P$; on en déduit comme précédemment, que si f est extrémale, on a $\varepsilon_a * f = k(a)f$ pour tout $a \in G$, d'où le résultat cherché d'après 1.

Nous désignerons par K le sous-ensemble du convexe compact $Q = P \cap B$ constitué par les caractères continus. La bijection canonique φ de G sur K est continue; c'est donc une homéomorphie lorsque G est compact. Lorsque G n'est pas compact nous admettrons (ce qui est élémentaire lorsque $G = \mathbb{R}^n$ en explicitant les caractères) que φ se prolonge continuement au point G d'Alexandrov de G, avec G (G) = 0; il en résulte en particulier que G est encore une homéomorphie, et que G0 est compact.

Théorème 6. 1) Q est un chapeau de P, et $\mathscr{E}(Q) = K \cup \{0\}$. 2) Pour toute $f \in P$, f est continue et il existe sur \hat{G} une mesure de Radon unique $\mu \geq 0$ telle que

$$f(x) = \int [x, t] d\mu(t)$$
 pour tout $x \in G$.

Démonstration. 1) Le lemme 4 montre que $P cdot Q = \{f \in P : ||f|| > 1\}$ est convexe, donc Q, déjà convexe et compact, est un chapeau de P; c'est même un chapeau universel en ce sens que P est réunion des nQ. Les éléments extrémaux de Q sont donc 0 et les éléments extrémaux de P de norme 1; d'après le lemme 5, ce sont des caractères continus de G.

Inversement, si f est un caractère continu de G c'est, d'après le théorème 2, un élément extrémal du cône P_d des fonctions de type positif sur G discret; comme $P \subset P_d$, c'est à fortiori un élément extrémal de P, donc $f \in \mathscr{E}(Q)$.

2) Tout $f \in Q$, donc aussi tout $f \in P$, est résultante d'une mesure positive μ portée par le compact $K \cup \{0\}$, ou ce qui revient au même, portée par K puisque toute mesure portée par 0 a une résultante nulle.

Autrement dit, pour toute $\alpha \in L^1$ on a:

$$\int f\alpha \ dx = \int (\int [x, t] \alpha(x) \ dx) \ d\mu(t) \ .$$

Or soit g la fonction sur G définie par $g(x) = \int [x, t] d\mu(t)$; elle est continue et bornée, et la formule de Fubini montre que:

$$\int g \alpha \, dx = \int \left(\int [x, t] \alpha(x) \, dx \right) d\mu(t) \,,$$

d'où $\int f\alpha \, dx = \int g\alpha \, dx$ pour tout $\alpha \in L^1$, d'où f = g. L'unicité de μ a été démontrée ci-dessus en 3. a.

Le théorème de Bernstein et ses généralisations

Soit f une fonction réelle définie sur un intervalle ouvert I de \mathbb{R} , de la forme $]-\infty$, a[, où a est fini ou $+\infty$. Le théorème de Bernstein affirme que si f a des dérivées de tous ordres et si f et ses dérivées sont positives, il existe une mesure $\pi \ge 0$ (d'ailleurs unique) sur \mathbb{R}^+ telle que l'on ait pour tout $x \in I$:

$$f(x) = \int e^{tx} d\pi(t).$$

Ce théorème, ainsi que ses généralisations dans diverses directions se démontre simplement en utilisant la notion d'élément extrémal. Nous appliquerons cette méthode à l'étude des fonctions absolument monotones dans un ouvert de \mathbb{R}^n ; le théorème de Bernstein en sera un cas particulier.

Définition 7. Soit C un cône convexe de \mathbb{R}^n d'intérieur non vide; soit Ω un ouvert de \mathbb{R}^n , et soit f une fonction numérique réelle sur Ω .

On dit que f est C-absolument monotone si $f \ge 0$ et si pour toute famille finie (a_i) d'éléments de C, la fonction $\mu * f$ (où μ est le produit de convolution des mesures $(\varepsilon_0 - \varepsilon_{a_i})$) est positive en tout point de Ω où elle est définie.

L'ensemble $\mathscr{A}(\Omega, C)$ des fonctions C-absolument monotones dans Ω est évidemment un cône convexe de $\mathscr{F}(\Omega, \mathbf{R})$, fermé pour la topologie de la convergence simple, donc faiblement complet dans $\mathscr{F}(\Omega, \mathbf{R})$.

Lemme 8. 1) Toute fonction \mathbf{R}_{-}^{+} -absolument monotone sur un intervalle ouvert Ω de \mathbf{R} est continue.

- 2) Toute $f \in \mathcal{A}(\Omega, \mathbb{C})$ est continue (où Ω et $\mathbb{C} \subset \mathbb{R}^n$).
- 3) Toute famille (f_i) d'éléments de $\mathcal{F}(\Omega, \mathbb{C})$ qui converge simplement en tout point d'un sous-ensemble D partout dense de Ω , converge uniformément sur tout compact de Ω .

Démonstration. 1) La condition $(\varepsilon_0 - \varepsilon_a) * f \ge 0$ pour $a \ge 0$ exprime que $\Delta_a(x) = f(x) - f(x-a) \ge 0$ lorsque x et $(x-a) \in \Omega$; donc f est croissante.

La condition $(\varepsilon_0 - \varepsilon_b) * (\varepsilon_0 - \varepsilon_a) * f \ge 0$ exprime que $\Delta_a(x)$ est fonction croissante de x. Donc si f est continue au point x, elle l'est aussi pour tout $y \le x$; et comme les points de continuité de f sont partout denses dans Ω , f est continue.

- 2) Supposons, ce qu'on peut toujours faire en choisissant dans C les vecteurs u_j de la base de \mathbb{R}^n , que $\mathbb{R}^n_+ \subset C$; il s'agit alors de montrer que pour tout pavé $P = \prod [\alpha_j, \beta_j] \subset \Omega$, f est continue sur P.
- a) Utilisons le fait que dans P, $\Delta_a(x) = f(x) f(x-a)$ est fonction croissante de x; ceci entraîne que:

$$0 \le f(\beta) - f(\beta - a) \le \sum_{j=1}^{j=n} (f(\beta) - f(\beta - a_j u_j)).$$

Or f est séparément continue par rapport à chaque variable, donc $(f(\beta)-f(\beta-a_i u_i))$ tend vers 0 avec a_i , d'où la continuité sur P au point β .

- b) Si l'oscillation de f dans un voisinage V de β dans P est $\leq \varepsilon$, l'inégalité $0 \leq f(x) f(x-a) \leq f(\beta) f(\beta-a)$ montre qu'elle est $\leq \varepsilon$ dans tout translaté de V contenu dans P.
- 3) Comme les f_i sont croissantes et convergent sur D, on peut les supposer localement uniformément bornées. Si donc le filtre donné est un

ultrafiltre \mathcal{U} , les f_i convergent partout dans Ω . Leur limite f appartient à $\mathcal{A}(\Omega, C)$, donc est continue. Montrons, avec les notations du (2), que la convergence est uniforme sur tout pavé $P \subset \Omega$.

Il suffit de reprendre les inégalités du (2): Pour tout $\varepsilon > 0$, il existe des $a_j > 0$ tels que $0 \le f(\beta) - f(\beta - a_j u_j) \le \varepsilon$. Les a_j étant fixés, il existe un $X \in \mathcal{U}$ tel que, pour tout $i \in X$ on ait $|f - f_i| \le \varepsilon$ aux points β et $(\beta - a_j u_j)$. L'oscillation de f_i est donc plus petite que $3n\varepsilon$ dans le petit pavé $\{x: \beta - a \le x \le \beta\}$; elle est donc plus petite que $3n\varepsilon$ dans tout translaté de ce pavé contenu dans P.

Quand le filtre donné n'est pas un ultrafiltre, la convergence annoncée a lieu pour tout ultrafiltre \mathscr{U} plus fin que \mathscr{F} , et comme la limite f est donnée sur D, f ne dépend pas de \mathscr{U} , d'où la propriété annoncée pour \mathscr{F} .

Lemme 9. Si Ω est C-stable, en ce sens que $\Omega - C = \Omega$, tout élément extrémal de $\mathcal{A}(\Omega, C)$ est de la forme cf, où $c \in \mathbb{R}^+$ et f une exponentielle de la forme $f(x) = e^{l(x)}$ où 1 est une forme linéaire positive sur C.

Démonstration. Pout tout f définie dans Ω et pout tout $a \in C$, l'hypothèse $\Omega - C \subset \Omega$ entraı̂ne que $\varepsilon_a * f$ est partout définie dans Ω ; il en est donc de même de $(\varepsilon_0 - \varepsilon_a) * f$.

En outre, si $f \in \mathcal{A}(\Omega, C)$, il en est de même de $\varepsilon_a * f$ et $(\varepsilon_0 - \varepsilon_a) * f$ d'après les relations:

$$\mu * (\varepsilon_a * f) = \varepsilon_a * (\mu * f); \quad (\mu * (\varepsilon_0 - \varepsilon_a)) * f = \mu * ((\varepsilon_0 - \varepsilon_a) * f).$$

Donc si f est extrémal dans le cône $\mathscr{A}(\Omega, C)$, la relation $f = (\varepsilon_a * f) + (\varepsilon_0 - \varepsilon_a) * f$ montre que pour tout $a \in C$, $\varepsilon_a * f = k(a) f$, où k(a) est une constante ≥ 0 .

Comme $f \neq 0$ on peut supposer, grâce au besoin à une translation, que $0 \in \Omega$ et que $f(0) \neq 0$; et même, en multipliant f par une constante, que f(0) = 1; on en déduit k(a) = f(-a), d'où l'identité f(x-a) = f(x)f(-a) pour tout $x \in \Omega$ et tout $a \in C$.

Comme f est continue, un raisonnement élémentaire montre que f est la restriction à Ω d'une exponentielle $e^{l(x)}$. Enfin, pour tout $x \in C$, on doit avoir $f(-x) \leq f(0)$, d'où $l(x) \geq 0$ sur C.

Théorème 10. Soit C un cône convexe de \mathbb{R}^n , d'intérieur non vide ; soit C^0 son polaire ; et soit Ω un ouvert C-stable de \mathbb{R}^n .

1) Pour toute $f \in \mathcal{A}(\Omega,C)$ il existe une mesure unique $\pi \geq 0$ sur le polaire C^0 , telle que :

(6)
$$f(x) = \int e^{t,x} d\mu(t).$$

- 2) L'ensemble $\mathcal{A}(\Omega, \mathbb{C})$ est identique à l'ensemble des fonctions f indéfiniment dérivables dans Ω dont toutes les dérivées partielles associées à des vecteurs de \mathbb{C} sont positives ; chacune de ces dérivées est convexe et analytique.
- 3) Pour toute mesure $\mu \geq 0$ sur C^0 , si l'on note f l'application de \mathbf{R}^n dans $[0, \infty]$ définie par la formule (6), l'ensemble X des x tels que f (x) < ∞ est, ou bien vide, ou bien convexe et C-stable. Dans ce dernier cas, sur l'ouvert convexe et C-stable $\Omega = X$, la fonction f est convexe, analytique, et appartient à $\mathcal{A}(\Omega, C)$. En outre, pour tout ouvert C-stable Ω' et toute $f' \in \mathcal{A}(\Omega', C)$, tels que f et f' coïncident sur un sous-ouvert de $\Omega \cap \Omega'$, on a $\Omega' \subset \Omega$, et f' est la restriction de f à Ω' .

Démonstration. 1) Soit D une partie dénombrable et partout dense de Ω ; le lemme 8 montre que sur $\mathscr{A}(\Omega, C)$ la topologie de la convergence simple est identique à la topologie de la convergence simple sur D, donc le cône faiblement complet $\mathscr{A}(\Omega, C)$ est métrisable.

Or pour tout $l \in C^0$, la fonction $e^l : x \to e^{l(x)}$ appartient à $\mathscr{A}(\Omega, C)$ et l'injection $l \to e^l$ de C^0 dans $\mathscr{A}(\Omega, C)$ est une homéomorphie. Donc l'image de C^0 dans $\mathscr{A}(\Omega, C)$ est un ensemble borélien qui rencontre toute génératrice extrémale de $\mathscr{A}(\Omega, C)$. Compte tenu de l_c et ce que pour tout $x \in \Omega$, l'application $f \to f(x)$ est une forme linéaire continue sur $\mathscr{F}(\Omega, \mathbb{R})$, il existe donc une $\pi \geq 0$ sur C vérifiant la relation (6).

Son unicité est immédiate: Supposons, ce qu'on peut toujours faire, que $0 \in \Omega$; alors π est bornée et son unicité résulte de ce que, si u_i désigne une base de \mathbb{R}^n contenue dans C, les fonctions de la forme $e^{-t(\sum_i n_i u_i)}$, où $n_i \in \mathbb{N}$, constituent d'après le théorème de Stone-Weierstrass, un ensemble total dans $\mathscr{C}_0(C^0)$.

De cette unicité de π résulte, d'après 1_c , que toute $e^{t \cdot x}$ où $t \in C$, est extrémale dans $\mathscr{A}(\Omega, C)$.

2) Soit A l'ensemble des fonctions indéfiniment dérivables sur Ω telles que, pour tout produit Δ de dérivations associées à des vecteurs de C, on ait $\Delta f \ge 0$.

Pour $a \in C$ et $f \in A$, on a $(\varepsilon_0 - \varepsilon_a) * f \in A$, car $\Delta((\varepsilon_0 - \varepsilon_a) * f) = (\varepsilon_0 - \varepsilon_a) * \Delta f$, qui est positive puisque Δf est croissante pour l'ordre associé à C.

On a donc $\mu * f \ge 0$ pour tout produit μ d'opérateurs $(\varepsilon_0 - \varepsilon_a)$, d'où $f \in \mathscr{A}(\Omega, C)$.

Inversement toute $f \in \mathcal{A}(\Omega, C)$ admet, d'après 10. 1, une représentation intégrale de la forme (6). Un raisonnement, classique dans l'étude de la

transformation de Laplace, et basé sur la croissance de l'exponentielle, montre alors que f est indéfiniment dérivable dans Ω , et que toutes ses dérivées partielles s'obtiennent par le calcul de dérivation formelle sous le signe intégrale. Il en résulte que toutes les dérivées partielles associées à des vecteurs de C sont positives.

Le même raisonnement classique montre que f est analytique dans Ω ; sa convexité est évidente puisque toute $e^{t \cdot x}$ est convexe.

3) Pour tout $t \in C^0$, la fonction $x \to e^{t \cdot x}$ est convexe et croissante (pour le préordre sur \mathbb{R}^n défini par C); donc f est aussi convexe (au sens large) et croissante. L'ensemble $X = \{x : f(x) < \infty\}$ est donc convexe et C-stable.

Si $X \neq \emptyset$, la C-stabilité de X entraı̂ne que le convexe \mathring{X} n'est pas vide, et est aussi C-stable. Sur l'ouvert $\Omega = \mathring{X}$, la fonction f est finie et convexe, donc continue. Le raisonnement du 10. 2 montre alors que f est analytique dans Ω .

Si Ω' est C-stable, $\Omega \cap \Omega'$ l'est aussi; il est donc connexe. Or f et f' étant analytiques, l'ensemble des x de $\Omega \cap \Omega'$ en lesquels f et f' ont toutes leurs dérivées égales est à la fois ouvert et fermé relativement à $\Omega \cap \Omega'$; comme il n'est pas vide, il est identique à $\Omega \cap \Omega'$. Ceci démontre la coïncidence de f, f' sur $\Omega \cap \Omega'$; montrons enfin que $\Omega' \subset \Omega$:

Pour tout $x \in \Omega \cup \Omega'$, est défini, ou bien f(x), ou bien f'(x), ou simultanément f(x) et f'(x), avec f(x) = f'(x); soit g(x) ce nombre unique.

La fonction g est définie sur l'ouvert C-stable $\Omega \cup \Omega'$, et en tout point ses dérivées partielles relatives à des vecteurs de C sont ≥ 0 , donc $g \in \mathscr{A}(\Omega \cup \Omega', C)$.

Soient respectivement μ , ν les mesures sur C^0 qui fournissent les représentations intégrales de f et g; comme f, g coïncident sur Ω , on a $\mu = \nu$ d'après 10.1.

Or $\int e^{t \cdot x} dv(t) < \infty$ sur $\Omega \cup \Omega'$, d'où la même relation pour μ , ce qui montre que $\Omega' \subset X$, d'où aussi $\Omega' \subset \Omega$.

Remarque 11. 1) Le corollaire 13 montrera que toute $f \in \mathcal{A}(\Omega, C)$ est analytique, même lorsque Ω n'est pas C-stable. On peut donc étendre la fin de l'énoncé 10. 3 à ces fonctions sous la forme suivante:

« Pour tout ouvert connexe Ω' et toute $f' \in \mathcal{A}(\Omega', C)$ tels que f et f' coïncident sur un sous-ouvert non vide de $\Omega \cap \Omega'$, on a $\Omega' \subset \Omega$, et f' est la restriction de f à Ω' . »

Pour le voir, on montre que si $\Omega' \subset \Omega$, on peut agrandir un peu Ω pour obtenir un ouvert C-stable $\Omega'' \subset (\Omega \cup \Omega')$ et une fonction $f'' \in \mathcal{A}(\Omega'', C)$,

qui coïncide avec f sur Ω . Il suffit ensuite d'appliquer le même raisonnement qu'en 10. 3 pour montrer qu'un tel Ω'' ne peut exister.

2) Il résulte du théorème 10 que pour tout ouvert C-stable Ω , toute $f \in \mathcal{A}(\Omega, C)$ se prolonge en une fonction $\hat{f} \in \mathcal{A}(\Omega, C)$, où $\hat{\Omega}$ est l'enveloppe convexe de Ω .

Nous allons maintenant étudier $\mathcal{A}(\Omega, C)$ pour un ouvert Ω quelconque.

Théorème 12. Désignons par P_n l'ouvert de \mathbb{R}^n constitué par les points à coordonnées >0. Alors, pour tout ouvert non vide Ω de la forme $P_n \cap (\bigcap_i (x_i - P_n))$, les éléments extrémaux de $\mathcal{A}(\Omega, \mathbb{R}^n_+)$ sont les monômes à coefficients >0.

Et tout $f \in \mathcal{A}(\Omega, \mathbb{R}^n_+)$ est somme d'une série entière à coefficients ≥ 0 .

Démonstration. 1) Pour toute suite $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ d'éléments de [0, 1], et tout $x = (x_i) \in \Omega$, on a aussi $(\alpha_i x_i) \in \Omega$. Pour tout $f \in \mathcal{A}(\Omega, \mathbf{R}_+^n)$ on désignera par f_{α} la fonction sur Ω définie par:

$$f_{\alpha}(x_1, ..., x_n) = f(\alpha_1 x_1, ..., \alpha_n x_n).$$

Les fonctions f_{α} et $g_{\alpha} = (f - f_{\alpha})$ appartiennent évidemment à $\mathscr{A}(\Omega, \mathbf{R}_{+}^{n})$, donc si f est extrémale dans le cône $\mathscr{A}(\Omega, \mathbf{R}_{+}^{n})$, la relation $f = f_{\alpha} + g_{\alpha}$ montre que $f_{\alpha} = k(\alpha)f$; autrement dit, pour tout $\alpha \in (]0, 1])^{n}$ et tout $x \in \Omega$, on a:

$$f(\alpha_1 x_1, ..., \alpha_n x_n) = k(\alpha_1, ..., \alpha_n) f(x_1, ..., x_n).$$

Comme f est continue (lemme 8), un raisonnement élémentaire montre alors que f est un produit de la forme $a x_1^{P_1} \dots x_n^{P_n}$. Cette fonction est indéfiniment dérivable par rapport à x_1 et comme $f \in \mathcal{A}(\Omega, \mathbb{R}^n_+)$, toutes ses dérivées par rapport à x_1 sont ≥ 0 ; ceci ne peut avoir lieu que si p_1 est un entier ≥ 0 ; même raisonnement pour chaque p_i , donc f est un monôme, avec évidemment a>0.

2) Comme en 10. 2 on vérifie que toute fonction dans Ω dont les dérivées partielles sont positives appartient à $\mathcal{A}(\Omega, \mathbf{R}_+^n)$; c'est en particulier le cas de tout monôme $x_1^{P_1} \dots x_n^{P_n}$. Soit M le sous-ensemble dénombrable de $\mathcal{A}(\Omega, \mathbf{R}_+^n)$ constitué par ces monômes; comme en 10. 1, on peut montrer que pour tout $f \in \mathcal{A}(\Omega, \mathbf{R}_+^n)$ il existe une mesure positive sur M dont la résultante est f; autrement dit f est une somme de monômes à coefficients ≥ 0 ; les propriétés élémentaires des séries entières entraînent l'unicité de ces coefficients. Il en résulte que tout monôme est un élément extrémal de $\mathcal{A}(\Omega, \mathbf{R}_+^n)$.

Corollaire 13. Pour tout cône convexe C de \mathbb{R}^n d'intérieur non vide et tout ouvert Ω de \mathbb{R}^n :

- 1) Toute $f \in \mathcal{A}(\Omega, \mathbb{C})$ est analytique,
- 2) $\mathcal{A}(\Omega, \mathbb{C})$ est identique à l'ensemble des fonctions f indéfiniment dérivables, dans Ω , dont toutes les dérivées partielles associées à des vecteurs de \mathbb{C} sont positives.

BIBLIOGRAPHIE

- [1] BUCY, R. S. et G. MALTESE, Extreme positive definite functions and Choquet's representation Theorem. *Jour. Math. Anal. Appl.*, 1965 ou 1966.
- [2] Choquet, G., Theory of capacities. Annales Inst. Fourier, 5, 1953, 131-295.
- [3] et P. A. MEYER, Existence et unicité des représentations intégrales. Ann. Inst. Fourier, 13, 1963, 139-154.

(Reçu le 1^{er} mai 1968)

Prof. G. Choquet Inst. H. Poincaré 12, rue Pierre Curie Paris 5^e

