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the form in (23) is a quadratic differential in the sense of Riemann surfaces.

For this purpose let z be a local complex coordinate on M, so that

(25) a Adz

Then we have, locally,

aß (A2 Ä) dz2

Exterior differentiation of (25) and use of (20) give

dA + iAœ12 0 mod dz

Combining with (24), we get

3 - 0
dz

i.e., the coefficient of dz2 in aß is holomorphic.
Since M is of genus zero, the quadratic differential must vanish. This

implies A 0 and that M is a great sphere.
The proof given above is not essentially different from those of Almgren

and Calabi. The main idea of using the quadratic differential in surface

theory goes back to H. Hopf. The formalism developed in this proof should
also be useful in the study of other problems on surfaces in S3.

4. A FORMULA ON NON-PARAMETRIC MINIMAL HYPERSURFACES

IN EUCLIDEAN SPACE

Instead of proving formula (2) we will establish a more general formula
for a non-parametric minimal hypersurface in the euclidean (ft+l)-space
En+1, which seems to have an independent interest.

Suppose a: M-*En+1 be an immersion of an /z-dimensional manifold M
in En+1. We consider orthonormal frames x e1 en+1 in En+1, such that
XE M and en+1 is the unit normal vector to M at x. We have then

dxE ei »

i

(26) de{ E oikek + co;!„ + 1 1 ^ ij,
k

dën+l ^
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with

(27) coik + coki0

and

(28) Z hikU>k, K hi-
k

The quadratic differential form

(29) FI
i i, k

is the second fundamental form of M and the condition for M to be a

minimal hypersurface is

(30) Z ho.
i

Exterior differentiation of (26) gives the structure equations

dcOi Y œj A œji >

j
(31) dmi:„+1Z A "hvi+i >

j
dcOik ^ ^ijA^jk ^i,n+l A^/c,/i+l •

j
The are connection forms of the riemannian metric induced on M.

If we define its curvature by the equation

(32) dœik Y œij A Ojk ~ \ Y Rikji œj A œi,
j z j,i

where Rikjl satisfy the symmetry relations

(33) Rikjl ~~ Rkijl ~ Riklj >

Rikji + Rijik + Rukj o,

the Rikjl in this case of a hypersurface are expressible in terms of the hik by

(34) Rikji hijhki — huhjk.

Taking the exterior derivative of (28) and using the second equation
of (31), we get

Yj (dhik 4" Yi hjk QJji T Yù ^ij tOjk) A C0k 0 •

k j j
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This allows us to put

(35) dhik + ^ hjk (Dji -f- ^ hij cojk ^ ^ikj ^jj j J

where hihj is symmetric in any two of the indices i, /c, j. It follows that./br
a minimal hypersurface the contraction of hikj with respect to any two indices

is zero. The left-hand side of (35) is the covariant differential of hik.

Let u be a real-valued smooth function on M. Then we have

(36) du Yu ui œi >

i

(37) Duid«; + X uj cojt X utj coj tj uß
j j

where Dut is the covariant differential of the gradient vector ut. The square
of the gradient of u and the Laplacian of u are respectively defined by

(38) (grad uf X
i

(39) Au =YJuii.
i

If <p (u) is a smooth function of u, we have

d (p(u) cp' (u) d u

D (p'{u)Ui) X (</>' («) « Ik + (p" (w) M; uk) cok,
k

so that

(40) Acp{u) cp' (u)Au + cp"(u)(grad u)2

From now on suppose M be a minimal hypersurface, so that the condition

(30) is fulfilled. The Ricci curvature is given by

(41) RijX Rikjk- X hJk
k k

which is negative semi-definite. The scalar curvature is

(42) R=-Ytit£ 0.
i, k

For n 2 we have R 2K, K being the gaussian curvature.
Now let au an+1 be a fixed orthonormal frame in En+1. We can write

(43) x £ XiCii + zan+1 1 ^kg>n,
i
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and a non-parametric hypersurface will be defined by the equation

(44) z z{x1,

Let

(45) (aA, eB) vAB 1 g A, B ^ n + 1

where the left-hand side stands for the scalar product of the vectors in
question and (vAB) is a properly orthogonal matrix. In particular, vAn+1 are
the components of the unit normal vector en+1 with respect to the fixed
frame aA. If we put

(46) ^ £ ' W

we have

(47) ^i,n+1 ^/J + l'n+1W W

For simplicity we will write v vn+l n+1. We wish to establish the formula

(48) Av Rv

In fact, we have, by (45) and (26),

dv dvn + l n+l (an + l, den + 1) — ^ vn+l i hik œk
i, k

and, by (37),

D(- Y,vn+lti hik)- V£hik - Yv»+u hikj
i i,J i,j

Formula (48) then follows from the definition of the Laplacian.
Formula (48) has the interesting consequence that on a minimal

hypersurface the corresponding equation (48), with v as an unknown function,
has a negative solution. In general, I do not know whether on a complete
simply-connected non-compact riemannian manifold with negative semi-

definite Ricci curvature the equation (48) has a negative solution other than
constants ; in the latter case we will have R 0. If the answer to this question

is no, it will give a proof of the «-dimensional Bernstein conjecture.
Formula (2) now follows as an easy consequence. Suppose therefore

n — 2. In this case we have, for a minimal surface,

(49) Z hij hik -lRöjk - ôjk,
i ^
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so that

(50) (gradv)2 - K{1-v2)

Formula (2) then follows immediately from (40).
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