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3. Proof of Theorem 2

Let S3 be the unit sphere in the euclidean 4-space E4. By an orthonormal
frame in E4 is meant an ordered set of vectors ea, 0:garg3, satisfying

(9) (ea, eß) öaß 0 ^ a, ß, y ^ 3

where the left-hand side is the scalar product of the vectors in question.
The space of all orthonormal frames can be identified with the group SO (4).
We introduce in SO (4) the Maurer-Cartan forms coaß according to the

equations

(10) dea £ coaßeß
ß

or

(11) ioaß (dea, eß).

It follows from (9) that

(12) coajä + coßa 0

Exterior differentiation of (10) gives the Maurer-Cartan structure equations
of SO (4), which are

(13) dcoaßcoay a cOyß.
y

There is a fibering

(14) SO(4)-> S3 SO(4)/ (3),

with the projection defined by sending the frame e0 e, e2 e3 to the unit
vector e0.

Suppose a smooth surface

(15) M -> S3

be described by the vector e0. We restrict to frames such that e3 is the unit
normal vector to M at e0.Thereare two choices for e3, any one of which
is called an orientation of M. Suppose M be oriented. Then the frames are
defined up to a rotation of the vectors eu e2 in the tangent plane. In other
words, our restricted family of frames is a circle bundle over M, for which
the structure equations (13) are valid.
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The condition that e3 is a normal vector at e0 implies

(16) co03 0

Taking its exterior derivative and using (13), we get

CO01 A C013 + (O02 A CO23 0

Since Mis an immersed surface, we have co01 aco02 ¥" 0 and Cartan's lemma
allows us to set

(17) co13 aœ0l + bco02 co23 bco01 + cco02

The condition for a minimal surface is the vanishing of the mean
curvature :

(18) a + c 0.

Let

(19) a co01 + ico02 ß co13 + iœ23

The structure equations (13) give

da — icol2 a a

(20) dß — iœi2 a ß

Under a rotation of e1 e2 both a and ß will be multiplied by the same

complex number of absolute value 1. It follows that

(21) a Aß, aß,

which are exterior and ordinary two-forms respectively, are globally defined

on our oriented surface M.
Suppose from now on that M is a minimal surface. Condition (18) can

be written

(22) ß Aä A a + ib

In this case the first form in (21) vanishes identically, while

(23) aß Äa2

Taking the exterior derivative of (22) and using (20), we get

(24) dA + 2iAco12 0 mod ä

The induced riemannian metric on M has an underlying complex
structure which makes M into a Riemann surface. We wish to show that
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the form in (23) is a quadratic differential in the sense of Riemann surfaces.

For this purpose let z be a local complex coordinate on M, so that

(25) a Adz

Then we have, locally,

aß (A2 Ä) dz2

Exterior differentiation of (25) and use of (20) give

dA + iAœ12 0 mod dz

Combining with (24), we get

3 - 0
dz

i.e., the coefficient of dz2 in aß is holomorphic.
Since M is of genus zero, the quadratic differential must vanish. This

implies A 0 and that M is a great sphere.
The proof given above is not essentially different from those of Almgren

and Calabi. The main idea of using the quadratic differential in surface

theory goes back to H. Hopf. The formalism developed in this proof should
also be useful in the study of other problems on surfaces in S3.

4. A FORMULA ON NON-PARAMETRIC MINIMAL HYPERSURFACES

IN EUCLIDEAN SPACE

Instead of proving formula (2) we will establish a more general formula
for a non-parametric minimal hypersurface in the euclidean (ft+l)-space
En+1, which seems to have an independent interest.

Suppose a: M-*En+1 be an immersion of an /z-dimensional manifold M
in En+1. We consider orthonormal frames x e1 en+1 in En+1, such that
XE M and en+1 is the unit normal vector to M at x. We have then

dxE ei »

i

(26) de{ E oikek + co;!„ + 1 1 ^ ij,
k

dën+l ^
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