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SIMPLE PROOFS OF TWO THEOREMS
ON MINIMAL SURFACES

Shiing-shen Chern *)

To the memory of J. Karamata

1. Introduction

We will give simple proofs of the following uniqueness theorems on
minimal surfaces:

Theorem 1 (Bernstein). Let z f (x, y) be a minimal surface in eucli-
dean three-space defined for all x, y. Then f (x, y) is a linear function.

Theorem 2. A closed minimal surface ofgenus zero on the three-sphere

must be totally geodesic and is hence a great sphere.

Theorem 2 has been proved by Almgren [1] and Calabi [2].

2. Proof of Theorem 1

Let

(1) W {i+f2X+f2yf ~l-
The proof is based on the identity

(2) Jl«g(l+i) K,

where A is the Laplacian relative to the induced riemannian metric of the
minimal surface M and K is its Gaussian curvature.

Suppose (2) be true. Let ds be the element of arc on M. Introduce the
conformai metric

*) Work done under partial support of NSF grant GP 8623.
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(3) da (l + ds

If p, q are isothermal coordinates on M, so that

(4) ds2 X2(dp2+dq2),

we have

1 f d2 d2\

1 / d2 d2

X2 \dp2 dq2

Applying this to the metric da, we find immediately that its gaussian
curvature is zero, or that the metric is flat.

On the other hand, it is clear that

(6) ds ^ da ^ 2 ds

It follows that the metric da on M is complete, for it dominates ds and ds

is complete. We have therefore on M a complete flat riemannian metric da.

By a well-known theorem, M, with the metric da, is isometric to the (£, //)-
plane with its standard flat metric, i.e.,

(7) da2 dÇ2 + dq2

Since K^O, we have, from (2) and (5),

The function log ^1 + —^, considered as a function in the (£, rj)-plane, is

therefore superharmonic. It is also clearly non-negative. By a well-known
theorem on superharmonic functions ([3], p. 130) it must be a constant.

Equation (2) then gives K 0, which implies that M is a plane.
The proof of (2) is a standard calculation. It will be proved at the end

of § 4 as a special case of a more general formula.
An advantage of this proof is the fact that, unlike many other known

proofs, complex function theory is not used.
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