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SIMPLE PROOFS OF TWO THEOREMS
ON MINIMAL SURFACES

Shiing-shen CHERN *)

To the memory of J. Karamata
1. INTRODUCTION
We will give simple proofs of the following uniqueness theorems on

minimal surfaces:

THEOREM 1 (Bernstein). Let z = f (X, y) be a minimal surface in eucli-
dean three-space defined for all xX,y. Then f (X, y) is a linear function.

THEOREM 2. A closed minimal surface of genus zero on the three-sphere
must be totally geodesic and is hence a great sphere.

Theorem 2 has been proved by Almgren [1] and Calabi [2].

2. PrRoOOF oF THEOREM 1

Let

1

(1) W:(1+f>2c +fi>zgl.

The proof is based on the identity

1
(2) Alog(l—i—w):K,

where 4 is the Laplacian relative to the induced riemannian metric of the
minimal surface M and K is its Gaussian curvature.

Suppose (2) be true. Let ds be the element of arc on M. Introduce the
conformal metric

*) Work done under partial support of NSF grant GP 8623.
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\ 1
(3) do = (1 + ﬁ’) ds .
If p, q are isothermal coordinates on M, so that
(4) ds* = 2*(dp* +dq?),
we have
(5) K=—i<a—2+i>logl,
A2\op*  0q*

1/ s 02
22 \ep? o 8qr)’

Applying this to the metric do, we find immediately that its gaussian cur-
vature 1s zero, or that the metric is flat.
On the other hand, it is clear that

(6) ds < do < 2ds.

It follows that the metric do on M is complete, for it dominates ds and ds
1s complete. We have therefore on M a complete flat riemannian metric do.
By a well-known theorem, M, with the metric do, is isometric to the (&, n)-
plane with its standard flat metric, i.e.,

(7) do* = d&* + dn*.

Since K<0, we have, from (2) and (5),

8 - 621 1 : =0
v (g g e ) =

1
The function log <1+—W—>, considered as a function in the (&, n)-plane, is

therefore superharmonic. It is also clearly non-negative. By a well-known
theorem on superharmonic functions ([3], p. 130) it must be a constant.
Equation (2) then gives K = 0, which implies that M is a plane.

The proof of (2) is a standard calculation. It will be proved at the end
of §4 as a special case of a more general formula.

An advantage of this proof is the fact that, unlike many other known
proofs, complex function theory is not used. '



3. ProOOF OF THEOREM 2

Let S° be the unit sphere in the euclidean 4-space E*. By an orthonormal
frame in E* is meant an ordered set of vectors e,, 0<a <3, satisfying

(9) (ea3eﬁ)=6aﬂa O§a3ﬁa’y§3af

where the left-hand side is the scalar product of the vectors in question.
The space of all orthonormal frames can be identified with the group SO (4).
We introduce in SO (4) the Maurer-Cartan forms w,, according to the
equations

(10) de, =) w,zeg
B

or

(11) a)aﬂ = (deaa eﬂ) <

It follows from (9) that
(12) i waﬂ + a)ﬁa s 0.

Exterior differentiation of (10) gives the Maurer-Cartan structure equations
of SO (4), which are

(13) dw,g = Y Wy A Oyp.
Y

There is a fibering
(14) SO(4) - S°> = SO(4)]/S0(3),

with the projection defined by sending the frame e, e; e, e; to the unit
vector e,. |
Suppose a smooth surface

(15) M - S3

be described by the vector e,. We restrict to frames such that e, is the unit
normal vector to M at e,. There are two choices for e, any one of which
is called an orientation of M. Suppose M be oriented. Then the frames are
defined up to a rotation of the vectors e;, e, in the tangent plane. In other
words, our restricted family of frames is a circle bundle over M , for which
the structure equations (13) are valid.
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The condition that e; is a normal vector at e, implies
(16) Wo; = 0.
Taking its exterior derivative and using (13), we get
Wo1 A @y3 + Wos AW,y = 0.

Since M is an immersed surface, we have wy; A @y, # 0 and Cartan’s lemma
allows us to set

(17) (D13 = aCO01 + bwoz ) Q)23 = ba)01 . CWygqy -

The condition for a minimal surface is the vanishing of the mean cur-
vature:

(18) a+c=0.
Let
(19) o = 0)01 + iwoz s ﬂ = CO13 + ia)23 .

The structure equations (13) give
dOC = - iwlz VANe 4 s
(20) dﬁ = - ia)12 AN ﬁ .

Under a rotation of e; e, both « and f will be multiplied by the same
complex number of absolute value 1. It follows that

(21) anB, of,

which are exterior and ordinary two-forms respectively, are globally defined
on our oriented surface M.

Suppose from now on that M is a minimal surface. Condition (18) can
be written

(22) p =Ax, A =a+ib.

In this case the first form in (21) vanishes identically, while
(23) af = Ao* .

Taking the exterior derivative of (22) and using (20), we get
(24) dA + 2idw;, =0, mod&.

The induced riemannian metric on M has an underlying complex
structure which makes M into a Riemann surface. We wish to show that
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the form in (23) is a quadratic differential in the sense of Riemann surfaces.
For this purpose let z be a local complex coordinate on M, so that

(25) o = Adz.
Then we have, locally,
af = (A*A)ydz*.
Exterior differentiation of (25) and use of (20) give
dA + ilw, =0, moddz.

Combining with (24), we get
0 _
— (4?4 =0
0z

i.e., the coefficient of dz? in «p is holomorphic.

Since M is of genus zero, the quadratic differential must vanish. This
implies A = 0 and that M is a great sphere.

The proof given above is not essentially different from those of Almgren
and Calabi. The main idea of using the quadratic differential in surface
theory goes back to H. Hopf. The formalism developed in this proof should
also be useful in the study of other problems on surfaces in S°.

4. A FORMULA ON NON-PARAMETRIC MINIMAL HYPERSURFACES
IN EUCLIDEAN SPACE

Instead of proving formula (2) we will establish a more geheral formula
for a non-parametric minimal hypersurface in the euclidean (n--1)-space
E""1, which seems to have an independent interest.

Suppose x: M—E""! be an immersion of an n-dimensional manifold M
in E"*'. We consider orthonormal frames x e ... e,,, in E"*1, such that
xe M and e, 1s the unit normal vector to M at x. We have then

dx =) w;e,
i

(26) de;, =) wge + ®yr1€01, 1205,k 1<n,
k

de,,; = — Z Wipn+1€is
1
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with

(27) Wy + o =0

and

(28) Wity = ;hik W, hy = hy.

The quadratic differential form
(29) H = Z W Wipt1 = Z hix ©; @y
i ik

1s the second fundamental form of M and the condition for M to be a
minimal hypersurface is

(30) Zl: h; = 0.
Exterior differentiation of (26) gives the structure equations
do; = Z @jAQj;
J
(31) AdWipsy = ; Wij ANDjn+1s
dwy = Z Wij A Wje = Dyptg A Dpptq

J

The w;, are connection forms of the riemannian metric induced on M.
If we define its curvature by the equation

(32) dwy = ; Wiy N Wy — %JZ; Rixji 0; Aoy
where Ry ; satisfy the symmetry relations
(33) Riyji = — Rujp = — Ruj
Rikjl + Rijlk + Rilkj =0 >
the Ry, in this case of a hypersurface are expressible in terms of the 4, by
(34) Rikjl = hij Mg — hy hjk~

Taking the exterior derivative of (28) and using the second equation
of (31), we get

;(dhik 03 Z hj oy + Z hiywp) Ao, = 0.
j j
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This allows us to put

(35) dhy + Z hjy, @ + Z hijjwp = Z Ryj @
J J J

where A ; is symmetric in any two of the indices i, k, j. It follows that for

a minimal hypersurface the contraction of h;; with respect to any two indices
is zero. The left-hand side of (35) is the covariant differential of 4.
Let u be a real-valued smooth function on M. Then we have

(36) du =) u;;,
(37) Dui = dui + Zul COJ-,- — Zul.l wj) uij = uji)
J J

where Du; is the covariant differential of the gradient vector u;. The square
of the gradient of u# and the Laplacian of u are respectively defined by

(38) (grad u? = Y uf,
(39) Au =Y uy.
If ¢ (1) is a smooth function of u, we have

do(u) = \GD'(u)du,
D (o' (u)uy) = ; ((Pl (W) uy + @ (1) u; uy) oy,

so that

(40) Ap () = @' (u) du + ¢” (u) (grad u)? .

From now on suppose M be a minimal hypersurface, so that the condi-
tion (30) is fulfilled. The Ricci curvature is given by

(41) Rij = ;Rikjk = - Z hik hjka
k

which is negative semi-definite. The scalar curvature is
(42) R=—-Yh, 20,
i,k
For n = 2 we have R = 2K, K being the gaussian curvature.
Now let ay, ..., a,4, be a fixed orthonormal frame in E"*1. We can write

(43) xzzxiai+zan+1> lél,kén,

1

L’Enseignement mathém., t. XV. ]
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and a non-parametric hypersurface will be defined by the equation

(44) z = z(Xg, .., X,) .
Let
(45) (ay,e5) = V45, 1£4,B<n+1,

where the left-hand side stands for the scalar product of the vectors in
question and (v 4p) is a properly orthogonal matrix. In particular, v, ,, are
the components of the unit normal vector e,,; with respect to the fixed
frame a,. If we put

0z y: ;
(46) Di = — W = 1+ZPi =1,
0x; i
we have
pi 1
(47) Uint1 = VV’ Un+1on+1 = — VV

For simplicity we will write v = v,,, ,.;. We wish to establish the formula
(48) Av = Rv.
In fact, we have, by (45) and (26),

dv = d'Un+1,n+1 = (@n4 1 den+1) = = zvrﬁl,ihik Dy 5
i,k

and, by (37),

D(“ Z Unt1,i hik) = -0 2 hy, hij w; — Z Un+1,i hikj ;.
i 1] L J
Formula (48) then follows from the definition of the Laplacian.
Formula (48) has the interesting consequence that on a minimal hyper-
surface the corresponding equation (48), with v as an unknown function,
has a negative solution. In general, I do not know whether on a complete
simply-connected non-compact riemannian manifold with negative semi-
definite Ricci curvature the equation (48) has a negative solution other than
constants; in the latter case we will have R = 0. If the answer to this ques-
tion is no, it will give a proof of the n-dimensional Bernstein conjecture.
Formula (2) now follows as an easy consequence. Suppose therefore
n = 2. In this case we have, for a minimal surface,

1
(49) Zhijhik = = §R51k = —Kéjks
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so that
(50) (gradv)? = — K(1-v%).

Formula (2) then follows immediately from (40).
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