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SIMPLE PROOFS OF TWO THEOREMS
ON MINIMAL SURFACES

Shiing-shen Chern *)

To the memory of J. Karamata

1. Introduction

We will give simple proofs of the following uniqueness theorems on
minimal surfaces:

Theorem 1 (Bernstein). Let z f (x, y) be a minimal surface in eucli-
dean three-space defined for all x, y. Then f (x, y) is a linear function.

Theorem 2. A closed minimal surface ofgenus zero on the three-sphere

must be totally geodesic and is hence a great sphere.

Theorem 2 has been proved by Almgren [1] and Calabi [2].

2. Proof of Theorem 1

Let

(1) W {i+f2X+f2yf ~l-
The proof is based on the identity

(2) Jl«g(l+i) K,

where A is the Laplacian relative to the induced riemannian metric of the
minimal surface M and K is its Gaussian curvature.

Suppose (2) be true. Let ds be the element of arc on M. Introduce the
conformai metric

*) Work done under partial support of NSF grant GP 8623.
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(3) da (l + ds

If p, q are isothermal coordinates on M, so that

(4) ds2 X2(dp2+dq2),

we have

1 f d2 d2\

1 / d2 d2

X2 \dp2 dq2

Applying this to the metric da, we find immediately that its gaussian
curvature is zero, or that the metric is flat.

On the other hand, it is clear that

(6) ds ^ da ^ 2 ds

It follows that the metric da on M is complete, for it dominates ds and ds

is complete. We have therefore on M a complete flat riemannian metric da.

By a well-known theorem, M, with the metric da, is isometric to the (£, //)-
plane with its standard flat metric, i.e.,

(7) da2 dÇ2 + dq2

Since K^O, we have, from (2) and (5),

The function log ^1 + —^, considered as a function in the (£, rj)-plane, is

therefore superharmonic. It is also clearly non-negative. By a well-known
theorem on superharmonic functions ([3], p. 130) it must be a constant.

Equation (2) then gives K 0, which implies that M is a plane.
The proof of (2) is a standard calculation. It will be proved at the end

of § 4 as a special case of a more general formula.
An advantage of this proof is the fact that, unlike many other known

proofs, complex function theory is not used.
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3. Proof of Theorem 2

Let S3 be the unit sphere in the euclidean 4-space E4. By an orthonormal
frame in E4 is meant an ordered set of vectors ea, 0:garg3, satisfying

(9) (ea, eß) öaß 0 ^ a, ß, y ^ 3

where the left-hand side is the scalar product of the vectors in question.
The space of all orthonormal frames can be identified with the group SO (4).
We introduce in SO (4) the Maurer-Cartan forms coaß according to the

equations

(10) dea £ coaßeß
ß

or

(11) ioaß (dea, eß).

It follows from (9) that

(12) coajä + coßa 0

Exterior differentiation of (10) gives the Maurer-Cartan structure equations
of SO (4), which are

(13) dcoaßcoay a cOyß.
y

There is a fibering

(14) SO(4)-> S3 SO(4)/ (3),

with the projection defined by sending the frame e0 e, e2 e3 to the unit
vector e0.

Suppose a smooth surface

(15) M -> S3

be described by the vector e0. We restrict to frames such that e3 is the unit
normal vector to M at e0.Thereare two choices for e3, any one of which
is called an orientation of M. Suppose M be oriented. Then the frames are
defined up to a rotation of the vectors eu e2 in the tangent plane. In other
words, our restricted family of frames is a circle bundle over M, for which
the structure equations (13) are valid.
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The condition that e3 is a normal vector at e0 implies

(16) co03 0

Taking its exterior derivative and using (13), we get

CO01 A C013 + (O02 A CO23 0

Since Mis an immersed surface, we have co01 aco02 ¥" 0 and Cartan's lemma
allows us to set

(17) co13 aœ0l + bco02 co23 bco01 + cco02

The condition for a minimal surface is the vanishing of the mean
curvature :

(18) a + c 0.

Let

(19) a co01 + ico02 ß co13 + iœ23

The structure equations (13) give

da — icol2 a a

(20) dß — iœi2 a ß

Under a rotation of e1 e2 both a and ß will be multiplied by the same

complex number of absolute value 1. It follows that

(21) a Aß, aß,

which are exterior and ordinary two-forms respectively, are globally defined

on our oriented surface M.
Suppose from now on that M is a minimal surface. Condition (18) can

be written

(22) ß Aä A a + ib

In this case the first form in (21) vanishes identically, while

(23) aß Äa2

Taking the exterior derivative of (22) and using (20), we get

(24) dA + 2iAco12 0 mod ä

The induced riemannian metric on M has an underlying complex
structure which makes M into a Riemann surface. We wish to show that
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the form in (23) is a quadratic differential in the sense of Riemann surfaces.

For this purpose let z be a local complex coordinate on M, so that

(25) a Adz

Then we have, locally,

aß (A2 Ä) dz2

Exterior differentiation of (25) and use of (20) give

dA + iAœ12 0 mod dz

Combining with (24), we get

3 - 0
dz

i.e., the coefficient of dz2 in aß is holomorphic.
Since M is of genus zero, the quadratic differential must vanish. This

implies A 0 and that M is a great sphere.
The proof given above is not essentially different from those of Almgren

and Calabi. The main idea of using the quadratic differential in surface

theory goes back to H. Hopf. The formalism developed in this proof should
also be useful in the study of other problems on surfaces in S3.

4. A FORMULA ON NON-PARAMETRIC MINIMAL HYPERSURFACES

IN EUCLIDEAN SPACE

Instead of proving formula (2) we will establish a more general formula
for a non-parametric minimal hypersurface in the euclidean (ft+l)-space
En+1, which seems to have an independent interest.

Suppose a: M-*En+1 be an immersion of an /z-dimensional manifold M
in En+1. We consider orthonormal frames x e1 en+1 in En+1, such that
XE M and en+1 is the unit normal vector to M at x. We have then

dxE ei »

i

(26) de{ E oikek + co;!„ + 1 1 ^ ij,
k

dën+l ^
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with

(27) coik + coki0

and

(28) Z hikU>k, K hi-
k

The quadratic differential form

(29) FI
i i, k

is the second fundamental form of M and the condition for M to be a

minimal hypersurface is

(30) Z ho.
i

Exterior differentiation of (26) gives the structure equations

dcOi Y œj A œji >

j
(31) dmi:„+1Z A "hvi+i >

j
dcOik ^ ^ijA^jk ^i,n+l A^/c,/i+l •

j
The are connection forms of the riemannian metric induced on M.

If we define its curvature by the equation

(32) dœik Y œij A Ojk ~ \ Y Rikji œj A œi,
j z j,i

where Rikjl satisfy the symmetry relations

(33) Rikjl ~~ Rkijl ~ Riklj >

Rikji + Rijik + Rukj o,

the Rikjl in this case of a hypersurface are expressible in terms of the hik by

(34) Rikji hijhki — huhjk.

Taking the exterior derivative of (28) and using the second equation
of (31), we get

Yj (dhik 4" Yi hjk QJji T Yù ^ij tOjk) A C0k 0 •

k j j
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This allows us to put

(35) dhik + ^ hjk (Dji -f- ^ hij cojk ^ ^ikj ^jj j J

where hihj is symmetric in any two of the indices i, /c, j. It follows that./br
a minimal hypersurface the contraction of hikj with respect to any two indices

is zero. The left-hand side of (35) is the covariant differential of hik.

Let u be a real-valued smooth function on M. Then we have

(36) du Yu ui œi >

i

(37) Duid«; + X uj cojt X utj coj tj uß
j j

where Dut is the covariant differential of the gradient vector ut. The square
of the gradient of u and the Laplacian of u are respectively defined by

(38) (grad uf X
i

(39) Au =YJuii.
i

If <p (u) is a smooth function of u, we have

d (p(u) cp' (u) d u

D (p'{u)Ui) X (</>' («) « Ik + (p" (w) M; uk) cok,
k

so that

(40) Acp{u) cp' (u)Au + cp"(u)(grad u)2

From now on suppose M be a minimal hypersurface, so that the condition

(30) is fulfilled. The Ricci curvature is given by

(41) RijX Rikjk- X hJk
k k

which is negative semi-definite. The scalar curvature is

(42) R=-Ytit£ 0.
i, k

For n 2 we have R 2K, K being the gaussian curvature.
Now let au an+1 be a fixed orthonormal frame in En+1. We can write

(43) x £ XiCii + zan+1 1 ^kg>n,
i

L'Enseignement mathém., t. XV.
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and a non-parametric hypersurface will be defined by the equation

(44) z z{x1,

Let

(45) (aA, eB) vAB 1 g A, B ^ n + 1

where the left-hand side stands for the scalar product of the vectors in
question and (vAB) is a properly orthogonal matrix. In particular, vAn+1 are
the components of the unit normal vector en+1 with respect to the fixed
frame aA. If we put

(46) ^ £ ' W

we have

(47) ^i,n+1 ^/J + l'n+1W W

For simplicity we will write v vn+l n+1. We wish to establish the formula

(48) Av Rv

In fact, we have, by (45) and (26),

dv dvn + l n+l (an + l, den + 1) — ^ vn+l i hik œk
i, k

and, by (37),

D(- Y,vn+lti hik)- V£hik - Yv»+u hikj
i i,J i,j

Formula (48) then follows from the definition of the Laplacian.
Formula (48) has the interesting consequence that on a minimal

hypersurface the corresponding equation (48), with v as an unknown function,
has a negative solution. In general, I do not know whether on a complete
simply-connected non-compact riemannian manifold with negative semi-

definite Ricci curvature the equation (48) has a negative solution other than
constants ; in the latter case we will have R 0. If the answer to this question

is no, it will give a proof of the «-dimensional Bernstein conjecture.
Formula (2) now follows as an easy consequence. Suppose therefore

n — 2. In this case we have, for a minimal surface,

(49) Z hij hik -lRöjk - ôjk,
i ^
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so that

(50) (gradv)2 - K{1-v2)

Formula (2) then follows immediately from (40).
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