Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 15 (1969)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SIMPLE PROOFS OF TWO THEOREMS ON MINIMAL SURFACES

Autor: Chern, Shiing-shen

DOI: https://doi.org/10.5169/seals-43204

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SIMPLE PROOFS OF TWO THEOREMS ON MINIMAL SURFACES

Shiing-shen CHERN *)

To the memory of J. Karamata

1. Introduction

We will give simple proofs of the following uniqueness theorems on minimal surfaces:

THEOREM 1 (Bernstein). Let z = f(x, y) be a minimal surface in euclidean three-space defined for all x, y. Then f(x, y) is a linear function.

Theorem 2. A closed minimal surface of genus zero on the three-sphere must be totally geodesic and is hence a great sphere.

Theorem 2 has been proved by Almgren [1] and Calabi [2].

2. Proof of Theorem 1

Let

(1)
$$W = \left(1 + f_{x}^{2} + f_{y}^{2}\right)^{\frac{1}{2}} \ge 1.$$

The proof is based on the identity

(2)
$$\Delta \log \left(1 + \frac{1}{W}\right) = K,$$

where Δ is the Laplacian relative to the induced riemannian metric of the minimal surface M and K is its Gaussian curvature.

Suppose (2) be true. Let ds be the element of arc on M. Introduce the conformal metric

^{*)} Work done under partial support of NSF grant GP 8623.

(3)
$$d\sigma = \left(1 + \frac{1}{W}\right) ds.$$

If p, q are isothermal coordinates on M, so that

$$ds^2 = \lambda^2 (dp^2 + dq^2),$$

we have

(5)
$$K = -\frac{1}{\lambda^2} \left(\frac{\partial^2}{\partial p^2} + \frac{\partial^2}{\partial q^2} \right) \log \lambda,$$
$$\Delta = \frac{1}{\lambda^2} \left(\frac{\partial^2}{\partial p^2} + \frac{\partial^2}{\partial q^2} \right).$$

Applying this to the metric $d\sigma$, we find immediately that its gaussian curvature is zero, or that the metric is flat.

On the other hand, it is clear that

$$(6) ds \le d\sigma \le 2 ds.$$

It follows that the metric $d\sigma$ on M is complete, for it dominates ds and ds is complete. We have therefore on M a complete flat riemannian metric $d\sigma$. By a well-known theorem, M, with the metric $d\sigma$, is isometric to the (ξ, η) -plane with its standard flat metric, i.e.,

$$d\sigma^2 = d\xi^2 + d\eta^2.$$

Since $K \leq 0$, we have, from (2) and (5),

(8)
$$\left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}\right) \log\left(1 + \frac{1}{W}\right) \leq 0.$$

The function $\log\left(1+\frac{1}{W}\right)$, considered as a function in the (ξ, η) -plane, is therefore superharmonic. It is also clearly non-negative. By a well-known theorem on superharmonic functions ([3], p. 130) it must be a constant. Equation (2) then gives K=0, which implies that M is a plane.

The proof of (2) is a standard calculation. It will be proved at the end of § 4 as a special case of a more general formula.

An advantage of this proof is the fact that, unlike many other known proofs, complex function theory is not used.

3. Proof of Theorem 2

Let S^3 be the unit sphere in the euclidean 4-space E^4 . By an orthonormal frame in E^4 is meant an ordered set of vectors e_{α} , $0 \le \alpha \le 3$, satisfying

(9)
$$(e_{\alpha}, e_{\beta}) = \delta_{\alpha\beta}, \quad 0 \leq \alpha, \beta, \gamma \leq 3,$$

where the left-hand side is the scalar product of the vectors in question. The space of all orthonormal frames can be identified with the group SO(4). We introduce in SO(4) the Maurer-Cartan forms $\omega_{\alpha\beta}$ according to the equations

(10)
$$de_{\alpha} = \sum_{\beta} \omega_{\alpha\beta} e_{\beta}$$

or

(11)
$$\omega_{\alpha\beta} = (de_{\alpha}, e_{\beta}).$$

It follows from (9) that

$$\omega_{\alpha\beta} + \omega_{\beta\alpha} = 0.$$

Exterior differentiation of (10) gives the Maurer-Cartan structure equations of SO(4), which are

(13)
$$d\omega_{\alpha\beta} = \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta}.$$

There is a fibering

(14)
$$SO(4) \rightarrow S^3 = SO(4) / SO(3)$$
,

with the projection defined by sending the frame $e_0 e_1 e_2 e_3$ to the unit vector e_0 .

Suppose a smooth surface

$$(15) M \to S^3$$

be described by the vector e_0 . We restrict to frames such that e_3 is the unit normal vector to M at e_0 . There are two choices for e_3 , any one of which is called an orientation of M. Suppose M be oriented. Then the frames are defined up to a rotation of the vectors e_1 , e_2 in the tangent plane. In other words, our restricted family of frames is a circle bundle over M, for which the structure equations (13) are valid.

The condition that e_3 is a normal vector at e_0 implies

$$\omega_{03} = 0.$$

Taking its exterior derivative and using (13), we get

$$\omega_{01} \wedge \omega_{13} + \omega_{02} \wedge \omega_{23} = 0$$
.

Since M is an immersed surface, we have $\omega_{01} \wedge \omega_{02} \neq 0$ and Cartan's lemma allows us to set

(17)
$$\omega_{13} = a\omega_{01} + b\omega_{02}, \quad \omega_{23} = b\omega_{01} + c\omega_{02}.$$

The condition for a minimal surface is the vanishing of the mean curvature:

$$(18) a + c = 0.$$

Let

(19)
$$\alpha = \omega_{01} + i\omega_{02}, \quad \beta = \omega_{13} + i\omega_{23}.$$

The structure equations (13) give

$$d\alpha = -i\omega_{12} \wedge \alpha,$$

$$(20) d\beta = -i\omega_{12} \wedge \beta.$$

Under a rotation of e_1 e_2 both α and β will be multiplied by the same complex number of absolute value 1. It follows that

$$(21) \alpha \wedge \overline{\beta} , \alpha \overline{\beta} ,$$

which are exterior and ordinary two-forms respectively, are globally defined on our oriented surface M.

Suppose from now on that M is a minimal surface. Condition (18) can be written

$$\beta = A\bar{\alpha}, \quad A = a + ib.$$

In this case the first form in (21) vanishes identically, while

$$\alpha \bar{\beta} = \bar{A} \alpha^2 .$$

Taking the exterior derivative of (22) and using (20), we get

(24)
$$dA + 2iA\omega_{12} \equiv 0, \mod \bar{\alpha}.$$

The induced riemannian metric on M has an underlying complex structure which makes M into a Riemann surface. We wish to show that

the form in (23) is a quadratic differential in the sense of Riemann surfaces. For this purpose let z be a local complex coordinate on M, so that

$$(25) \alpha = \lambda dz.$$

Then we have, locally,

$$\alpha \bar{\beta} = (\lambda^2 \bar{A}) dz^2$$
.

Exterior differentiation of (25) and use of (20) give

$$d\lambda + i\lambda\omega_{12} \equiv 0$$
, mod dz .

Combining with (24), we get

$$\frac{\partial}{\partial \bar{z}} \left(\lambda^2 \, \bar{A} \right) \, = \, 0$$

i.e., the coefficient of dz^2 in $\alpha \bar{\beta}$ is holomorphic.

Since M is of genus zero, the quadratic differential must vanish. This implies A = 0 and that M is a great sphere.

The proof given above is not essentially different from those of Almgren and Calabi. The main idea of using the quadratic differential in surface theory goes back to H. Hopf. The formalism developed in this proof should also be useful in the study of other problems on surfaces in S^3 .

4. A FORMULA ON NON-PARAMETRIC MINIMAL HYPERSURFACES IN EUCLIDEAN SPACE

Instead of proving formula (2) we will establish a more general formula for a non-parametric minimal hypersurface in the euclidean (n+1)-space E^{n+1} , which seems to have an independent interest.

Suppose $x: M \to E^{n+1}$ be an immersion of an *n*-dimensional manifold M in E^{n+1} . We consider orthonormal frames $x e_1 \dots e_{n+1}$ in E^{n+1} , such that $x \in M$ and e_{n+1} is the unit normal vector to M at x. We have then

$$dx = \sum_{i} \omega_{i} e_{i},$$

$$de_{i} = \sum_{k} \omega_{ik} e_{k} + \omega_{i,n+1} e_{n+1}, \quad 1 \leq i, j, k, l \leq n,$$

$$de_{n+1} = -\sum_{i} \omega_{i,n+1} e_{i},$$

with

$$(27) \omega_{ik} + \omega_{ki} = 0$$

and

(28)
$$\omega_{i,n+1} = \sum_{k} h_{ik} \omega_{k}, \quad h_{ik} = h_{ki}.$$

The quadratic differential form

(29)
$$\prod = \sum_{i} \omega_{i} \omega_{i,n+1} = \sum_{i,k} h_{ik} \omega_{i} \omega_{k}$$

is the second fundamental form of M and the condition for M to be a minimal hypersurface is

$$\sum_{i} h_{ii} = 0.$$

Exterior differentiation of (26) gives the structure equations

(31)
$$d\omega_{i} = \sum_{j} \omega_{j} \wedge \omega_{ji},$$

$$d\omega_{i,n+1} = \sum_{j} \omega_{ij} \wedge \omega_{j,n+1},$$

$$d\omega_{ik} = \sum_{j} \omega_{ij} \wedge \omega_{jk} - \omega_{i,n+1} \wedge \omega_{k,n+1}.$$

The ω_{ik} are connection forms of the riemannian metric induced on M. If we define its curvature by the equation

(32)
$$d\omega_{ik} = \sum_{i} \omega_{ij} \wedge \omega_{jk} - \frac{1}{2} \sum_{i,l} R_{ikjl} \omega_{j} \wedge \omega_{l},$$

where R_{ikjl} satisfy the symmetry relations

(33)
$$R_{ikjl} = -R_{kijl} = -R_{iklj},$$
$$R_{ikjl} + R_{ijlk} + R_{ilkj} = 0,$$

the R_{ikjl} in this case of a hypersurface are expressible in terms of the h_{ik} by

$$(34) R_{ikil} = h_{ii} h_{kl} - h_{il} h_{jk}.$$

Taking the exterior derivative of (28) and using the second equation of (31), we get

$$\sum_{k} (dh_{ik} + \sum_{i} h_{jk} \omega_{ji} + \sum_{i} h_{ij} \omega_{jk}) \wedge \omega_{k} = 0.$$

This allows us to put

(35)
$$dh_{ik} + \sum_{j} h_{jk} \omega_{ji} + \sum_{j} h_{ij} \omega_{jk} = \sum_{j} h_{ikj} \omega_{j},$$

where h_{ikj} is symmetric in any two of the indices i, k, j. It follows that for a minimal hypersurface the contraction of h_{ikj} with respect to any two indices is zero. The left-hand side of (35) is the covariant differential of h_{ik} .

Let u be a real-valued smooth function on M. Then we have

(36)
$$du = \sum_{i} u_{i} \omega_{i},$$

(37)
$$Du_{i} = du_{i} + \sum_{j} u_{j} \omega_{ji} = \sum_{j} u_{ij} \omega_{j}, \quad u_{ij} = u_{ji},$$

where Du_i is the covariant differential of the gradient vector u_i . The square of the gradient of u and the Laplacian of u are respectively defined by

$$(38) \qquad (\operatorname{grad} u)^2 = \sum_{i} u_i^2,$$

$$\Delta u = \sum_{i} u_{ii}.$$

If $\varphi(u)$ is a smooth function of u, we have

$$d \varphi(u) = \varphi'(u) d u ,$$

$$D(\varphi'(u) u_i) = \sum_{k} (\varphi'(u) u_{ik} + \varphi''(u) u_i u_k) \omega_k ,$$

so that

(40)
$$\Delta \varphi(u) = \varphi'(u) \Delta u + \varphi''(u) (\operatorname{grad} u)^2.$$

From now on suppose M be a minimal hypersurface, so that the condition (30) is fulfilled. The Ricci curvature is given by

(41)
$$R_{ij} = \sum_{k} R_{ikjk} = -\sum_{k} h_{ik} h_{jk},$$

which is negative semi-definite. The scalar curvature is

(42)
$$R = -\sum_{i,k} h_{ik}^2 \le 0.$$

For n = 2 we have R = 2K, K being the gaussian curvature.

Now let $a_1, ..., a_{n+1}$ be a fixed orthonormal frame in E^{n+1} . We can write

(43)
$$x = \sum_{i} x_{i} a_{i} + z a_{n+1}, \quad 1 \leq i, k \leq n,$$

and a non-parametric hypersurface will be defined by the equation

$$(44) z = z(x_1, ..., x_n).$$

Let

$$(45) (a_A, e_B) = v_{AB}, 1 \le A, B \le n+1,$$

where the left-hand side stands for the scalar product of the vectors in question and (v_{AB}) is a properly orthogonal matrix. In particular, $v_{A,n+1}$ are the components of the unit normal vector e_{n+1} with respect to the fixed frame a_A . If we put

$$(46) p_i = \frac{\partial z}{\partial x_i}, W = \left(1 + \sum_i p_i^2\right)^{\frac{1}{2}} \ge 1,$$

we have

(47)
$$v_{i,n+1} = \frac{p_i}{W}, \quad v_{n+1},_{n+1} = -\frac{1}{W}.$$

For simplicity we will write $v = v_{n+1,n+1}$. We wish to establish the formula

$$\Delta v = Rv.$$

In fact, we have, by (45) and (26),

$$dv = dv_{n+1,n+1} = (a_{n+1}, de_{n+1}) = -\sum_{i,k} v_{n+1,i} h_{ik} \omega_k,$$

and, by (37),

$$D\left(-\sum_{i} v_{n+1,i} h_{ik}\right) = -v \sum_{i,j} h_{ik} h_{ij} \omega_{j} - \sum_{i,j} v_{n+1,i} h_{ikj} \omega_{j}.$$

Formula (48) then follows from the definition of the Laplacian.

Formula (48) has the interesting consequence that on a minimal hypersurface the corresponding equation (48), with v as an unknown function, has a negative solution. In general, I do not know whether on a complete simply-connected non-compact riemannian manifold with negative semi-definite Ricci curvature the equation (48) has a negative solution other than constants; in the latter case we will have R = 0. If the answer to this question is no, it will give a proof of the n-dimensional Bernstein conjecture.

Formula (2) now follows as an easy consequence. Suppose therefore n=2. In this case we have, for a minimal surface,

(49)
$$\sum_{i} h_{ij} h_{ik} = -\frac{1}{2} R \delta_{jk} = -K \delta_{jk},$$

so that

(50)
$$(\operatorname{grad} v)^2 = -K(1-v^2).$$

Formula (2) then follows immediately from (40).

BIBLIOGRAPHY

- [1] Almgren, F. J. Jr. Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. *Ann. of Math.*, 85 (1966), 277-292.
- [2] CALABI, E. Minimal immersions of surfaces in euclidean spheres. J. of Diff. Geom., 1 (1967), 111-125.
- [3] PROTTER, M. H. and WEINBERGER, H. Maximum principles in differential equations, Prentice-Hall, 1967.

(Reçu le 10 septembre 1968).

S. S. Chern
Dep. of Math.
University of California
Berkeley, Ca. 94720.

