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A NOTE ON THE DEGREE OF APPROXIMATION
TO CONTINUOUS FUNCTIONS

R. BojaNIC

To the memory of J. Karamata

1. If fis a continuous function on [—1, 1] and w, its modulus of
continuity defined by

wp(h) =sup {|f(x) —fODI:x,ye[-11], |x=y|=h},

then according to the well known theorem of D. Jackson the sequence
(P [f] of polynomials of best approximation to f satisfies the inequalities

1
max [P, [f](x) —f(x)| = Co, <;> ,n=1,2,..

—1=x=1
where C is a constant (see [1] and [2], p. 56).

Several authors have constructed explicitly sequences of polynomials
(P, [f]) which have essentially the same deviation from f, or the same
degree of precision of approximation to f, as (P, [f]). V. K. Dzjadik [3]
has used polynomials (P, [ /]) defined by

1

PIf](x) = % J £ (46) (D (% ”3”) + D, (” = x)) i

for the approximation to f on [0, 1]. Here

1 - 7—;1(1-—-1—)62) g
an (X) = an( 2 - ) s

X

T, 1s the Chebyshev polynomial of degree n, and ¢, is chosen so that

1

[ Dy (x)dx =1 (see [3], p. 339).
= 1,

R. DeVore [4] has introduced the sequence of polynomials (L, [ f])
defined by

1
2

LIf1(x) = [f(HA (t—x)dt

L’Enseignement mathém., t. XV,




44 —

where A, is the polynomial

A,(x) = ¢, (M—)z .
X

2
— %oy

Here P,, is the Legendre polynomial of degree 2n, a,, is the smallest positive
1

zero of P,, and c, is chosen so that | 4, (x)dx = 1.
-1

More complicated sequences of interpolatory polynomials have been
obtained by G. Freud [5], R. B. Saxena [6] and M. Sallay [7].

The aim of this note is to give a general result of this type which should
illuminate better the nature of approximation processes which are close
to the best possible approximation.

We shall consider here approximating polynomials generated by a
sequence of orthogonal polynomials (p,) on [—1, 1] whose weight function
w is non-negative, even and L-integrable on [—1, 1] and has the following
properties:

(1.1) 0<m=w(x) for xe[—c,c], 0<c=1
(1.2) wx)=M for xe[—-0,0], 0<o=1.

We shall denote the zeros of p, in their increasing order by x,,
k=1,..,n:

Since w is even, the zeros of p, are symmetrically distributed in [—1, 1].
Our basic result can be stated as follows:

THEOREM. Let w be a non-negative, even and L-integrable function on
[—1, 1] satisfying conditions (1.1) and (1.2) and let (p,) be the sequence of
orthogonal polynomials on [—1, 1] generated by the weight function w.

Let (R,) be either one of the following two sequences of polynomials

2 2
(l) c, <_§2n (x)z ) (”) c, ( p22n+1 (Zx) )
X" — Oy, X (X7 — 05,4 1)

where o, is the smallest positive zero of p, and c, is chosen so that

[ R, (x)dx = 1.

For any f continuous on [—1 ¢, 1 c] let the sequence of polynomials

(K, [f]) be defined by
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2
K,[f169 = [f@OR,(x—1)dt.
2
Then for all n sufficiently large we have the inequality

1
max mxﬂuy<mmé0wQJ

where C depends only on the choice of the weight function w.

This theorem states essentially that if the weight function w is bounded
away from zero and infinity in a neighborhood of 0, and if f is continuous
there, then the sequence (K, [f]) converges uniformly to f in a smaller
neighborhood of 0 and the rate of convergence is close to the best possible.

The weight functions of all classical orthogonal polynomials clearly
satisfy conditions (1.1) and (1.2).

The simplest sequences of approximating polynomials are obtained by
choosing w(x) = (1—x*7% xe(—1,1). The corresponding orthogonal

polynomials are then the Chebyshev polynomials 7, with «,, = sin ; and
n
Oyy+q = SIN . The kernels R, are
2n-+1
T,,(x 2 T 2
() R =, 2\ i) Rw= g, o1 ()
2 . 3 2 ., T
xX° — sin® — x| x* —sin
4n 2n +1

Other simple approximating sequences are obtained by choosing
w(x) = (1—x%%, x e [—1, 1]. In this case we have the Chebyshev polynomials

U, with «,, = sin o and o,,; = sin L The corresponding kernels
are
U,, (x 2 s
() Ry = e[ — 2\ iy Ry = [ L1 @)
2 g D T
X —sin

x [ x2 —sin? —~
4n +2 on4+2

Finally, the choice w (x) = 1, x e [—1, 1] leads to kernels generated by
Legendre polynomials P, :
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(i) R,(x) 9~=cn<—§i(—x)7> (i) R,(x) =c,,< S ) .
X T %2n X (x* —0zp+1)

The first of these kernels was used in R. DeVore’s proof of Jackson’s
theorem.

2. The proof of our theorem is based on certain properties of zeros x,
of p, and the corresponding Cotes numbers 4,, which appear in the Gauss
quadrature formula. As it is well known, the Gauss formula states that
for any polynomial P of degree = 2n—1 we have

[P(x)w(x)dx = i A P (%1,

k
In order to simplify the proof of the theorem we shall formulate the
most important steps in the proof as lemmas.

LEMMA 1. Let w be a non-negative, even and L-integrable function on
[—1, 1] satisfying condition (1.1). Then the sequence (,) of smallest positive
zeros of p,,n = 1,2, ... converges to zero.

b
ProOF. Given 0<e<c, choose [a, b], 0<a<b<e. Since | w (x) dx =

a

>~ m(b—a) > 0, for all n sufficiently large the polynomial p, will have
a zero in [a, b] (see [8], pp. 110-111). This means that O<a,<e foralln> N,.
Hence «,—0 (n— o0).

LEMMA 2. Let w be a non-negative and L-integrable function on[—1, 1]
satisfying condition (1.2). If x,, € [—3% 0, 3 ], then the corresponding Cotes

number 1., satisfies the inequality 0<A,=C,/n where C =4nM -+
1

2
+ ~ [ w(dt
0 ]

Proor. This is a result of P. Erdds and P. Turan (see [9], Lemma V,
p. 530). Another simpler and more direct proof of this inequality was given
by G. Freud (see [10], Hilfssatz IVa, p. 259).

LeMMA 3. Let w be a non-negative, even and L-integrable weight function
on [—1, 1] satisfying conditions (1.1) and (1.2). Then for all n sufficiently
large the smallest positive zero o, of p, satisfies the inequality o,= C,/n.

Proor. Since by Lemma 1 the sequence (o,) converges to zero, we can
find N; such that
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o,€[0,46] forall n=N,.

Let B, be the largest non-positive zero of p,. Since w is even, we have g, = —«,
or B, = 0. By the separation theorem of Chebyshev, Markov and Stieltjes
we have

mat, = m (o, —f,) = }n w()di=A(B,) + A(a)

Bn

where A (8,) and A («,) are Cotes numbers in the Gauss formula correspond-
ing to the zeros B, and «, of p,. Since fB,, o, € [—31 3, £ J], we have by
Lemma 2 ma,=2C,/n for all n=N; and the Lemma is proved.

LeEMMA 4. If R is a non-negative polynomial of degree = 4n—1 such

that | R(t)dt =1, then we have the inequality R (x) = Cin for all

X € [——%C,%C].

ProoF. Let P(x) = [ R(¢)dt. Then Pisa polynomial of degree = 4n

with |P (x)| =1 for all x € [—c¢, c] and the proof of the Lemma follows
immediately from Bernstein’s inequality (see [2], p. 62).

LEMMA 5. For all n sufficiently large the polynomials R, satisfy the
inequality

[ R,(t)dt = Cn™2.

Proor. We shall prove the inequality only for

R,(x) = ¢, (%) :
xX© — a3,

The same argument shows that
2
a1 (x
R, (x) = Cn< 1722 +12( ) )
X (X" — o5, 41)

satisfies the same inequality.
We have first by (1.1)

jtzR () dt = — Etz R,(t) w(t) dt

§ —

j'tZR () w(t)dt .

EIH
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Since R, is an even polynomial of degree 4n—4, non-negative and vanish-
ing at all zeros x, ,, of p,, except at «,, and —a,,, we have by Gauss qua-
drature formula based on the zeros of p,,

2n

1
j t2 Rn (t) w (t) dt = Z lk,Zn (xk,Zn)2 Rn (xk,Zn)
-1 : =1

k
= 2;' (OCZn) agn Rn (OCZn) d
By Lemma 3 we can find N, ; such that for all n=N_; we have
0 < oy, = C,/2n and 0 < a,, <min(}c,19).

By Lemma 2 we have then A («,,)=C;/2n. Hence for all n= N_; we have
J£2 R, (dt = C; (C)* (1/n°) R, (22,) -

By Lemma 4, 0=R, (x)=C; n for all x e [} ¢, 1 ]. Since «,,€][0, 3 c], we
have R, (x,,)= C;n and the Lemma is proved.

LEmMMA 6. Let L, be a positive linear operator defined on the set of all
continuous functions on [a, b], with values in the set of continuous functions
on [a, ], with a< a<B=b. Then

2.1 L LA =L [ + 1) op () + HSIHIL, [1] =111

where

o = 1Ly [E=%)?]O)II" .

Here, the operator L, is applied to the variable ¢ € [a, b], while the sup
norm || || is taken with respect to x € [«, f].

Proor. This is a result of O. Shisha and B. Mond (see [11], Th. 1.)
Since

2 = ||L, [*] (x) =x*|| + 2y ||L, [{]1(®) —x|] + y* |IL,[1] —1]]

where y = max (Ja], |f]), the well known theorem of P. P. Korovkin about
convergence of sequences of positive linear operators follows immediately
from the inequality (2.1) (see [12], Ch. 1).

We shall give here Shisha and Mond’s proof of the inequality (2.1).
We have first for any x € [a, ff]

IL, [f1()=f ) = L, [If (&) =f )] () + [f G L, [1] () — 1] .
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Since for any £>0 we have

(t—x)*

|f () =f @) é<1+ )wf(h)7

it follows that
1
L, [f]1X) —f(0)| = o, () (Ln [1](0) + e L,[(t—x?] (X)> +
+ [ f] L, [1] (x) —1].

Hence
1
(2.2) L, [f]1=f1l =y () (HLn[l]II t o3 1L, [(t —x)*] (x)ll> +

+ AL, [ =111

If u, =|IL, [(t—x)*] (x)||*>0, (2.1) follows from (2.2) by choosing
h = u,. If u, = 0, the inequality (2.2) becomes

L, [f]=fll =o)L, [ + HF L, [1] = 1]
and (2.1) follows again since /4 can be chosen arbitrarily small.

3. Proof of the Theorem. The operator K, defined by

cl2

K[f1x) = | fOR,(x=1adt
—c/2
is clearly a positive linear operator. Hence, in view of Lemma 6, we have
only to evaluate ||K, [(z—x)*]1 ()|, |IK,[1]—1]] and ||K, [1]||, where
llgll = sup { lg ()| |x] = }.
We have first for |x| = %

4
c/2 x+ 5
K, [t=x?]x)= [ —=0*R,(x=0dt= [ #R,(Hdt=
—-c/2 x—,z(,:,
3¢
4
= [ #R,(ndt.

_3,
4

Hence

W = K, [(t=x)*]®)ll = [ R,(H)dt.
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On the other hand, since [ R, (t)dt = 1, we have

-

+

[ "R,(adt

(S K

1 - K,[1](x) = ER,,(t)dt —

X —

c

c x_'f
= [R,®dt+ [ R,(t)dr.
x+ < ¢
2
Consequently, for |x|=; we have
.
R, (¢) dt

1-K,[1](x)] = f+§

and so
16 ¢ ‘
K, [1]=1{l=— [ R, ()dt.
; e o_.

Finally, for |x| =% we have

+ 2

2 c
R,(1)dt = [R,(t)dt =1

X

0=K,[ll(x)= |

and so ||K, [1]||=1.
Applying Lemma 6 we find that

c 16 c
HK,,[f]—fHé2wf<( ItZRn(t)dt)%> + = /1l Jt* R, (t)dt.

By Lemma 5 we have for all n sufficiently large the inequality

N 1 1
K [f1-fll=2(1+/C) o, (;> + (16 C Hf]|c"2)?

and the rest of the proof follows from elementary properties of the modulus

of continuity ..
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