Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 14 (1968)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR QUELQUES APPLICATIONS DE LA «MÉTHODE DE

L'HYPERBOLE» DE DIRICHLET A LA THÉORIE DES NOMBRES

PREMIERS

Autor: Saffari, Bahman

Kapitel: III. Sur un théorème de Rényi et Delange

DOI: https://doi.org/10.5169/seals-42352

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

polynômes $P_1, P_2, ..., P_r, ...$ de degré h-1 tels que, lorsque $x \to +\infty$, on ait pour tout $m \ge 1$:

$$\sum_{1 \le n \le x} \left(\omega_{k,l}(n) \right)^h = x \sum_{r=0}^m \frac{P_r(\log \log x)}{(\log x)^r} + O\left[\frac{(\log \log x)^{h-1}}{(\log x)^{m+1}} \right]$$

Indiquons le principe de la démonstration, pour simplifier, dans le cas h = 2. Nous avons:

(9)
$$(\omega_{k,l}(n))^2 = \omega_{k,l}(n) + 2 \sum_{P_2/n} 1,$$

où p_2 décrit les entiers décomposables en produit de deux facteurs premiers distincts et $\equiv l \pmod{k}$. Comme on connaît le développement asymptotique $p_2 \equiv 1$, la démonstration s'achève par la méthode de l'hyperbole, grâce à la relation (9), de manière analogue au théorème 1.

b) Il est clair que les théorèmes asymptotiques 1 à 4 s'étendent à une large classe de fonctions fortement additives⁹): c'est le cas pour toutes les fonctions totalement additives f(n) pour lesquelles il existe une fonction réelle $\theta(x)$ « suffisamment dérivable » (par exemple de classe C^1) et « suffisamment régulière » (par exemple $\theta(x) = x^{\lambda}$, $\lambda > 0$; $\theta(x) = (\log x)^{\lambda}$, $\lambda > 0$) telle que $f(p) = \theta(p) \chi_{k,l}(p)$, où $\chi_{k,l}$ est la fonction caractéristique des nombres premiers $\equiv l \pmod{k}$. On peut alors calculer les développements de $\sum_{1 \le n \le x} (f(n))^n$, h entier ≥ 1 .

Par exemple, si $S_{\lambda}(n)$ est la somme des puissances λ ièmes des diviseurs premiers de n ($\lambda > 0$), nous pouvons trouver une suite de constantes α_1 , α_2 , ..., α_r , ... ne dépendant que de λ et telles que, lorsque $x \to +\infty$, on ait pour tout entier $m \ge 2$:

$$\sum_{1 \leq n \leq x} S_{\lambda}(n) = \frac{\zeta(\lambda+1)}{\lambda+1} \cdot \frac{x^{\lambda+1}}{\log x} + \sum_{r=2}^{m} \alpha_r \frac{x^{\lambda+1}}{(\log x)^r} + O\left[\frac{x^{\lambda+1}}{(\log x)^{m+1}}\right].$$

III. SUR UN THÉORÈME DE RÉNYI ET DELANGE

1. Soient $\omega(n)$ le nombre des diviseurs premiers distincts de l'entier positif n, et $\Omega(n)$ le nombre total des facteurs dans la décomposition de n en facteurs premiers. Autrement dit, si $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, où les p_i sont

⁹⁾ Une fonction arithmétique additive est dite fortement additive si $f(p^m) = f(p)$ pour tous p premier set m entier ≥ 1 .

des nombres premiers distincts deux à deux et les α_i des entiers $\geqslant 1$, alors $\omega(n) = r$ et $\Omega(n) = \alpha_1 + \alpha_2 + ... + \alpha_r$. On a donc $\Omega(n) \geqslant \omega(n)$, l'égalité n'ayant lieu que pour les entiers « quadratfrei ».

A. Rényi [5] a montré que, pour tout entier $m \ge 0$, l'ensemble des entiers n pour lesquels $\Omega(n) - \omega(n) = m$ possède une densité d_m (c.à.d. que, si $v_m(x)$ est le nombre des $n \le x$ tels que $\Omega(n) - \omega(n) = m$, alors pour $x \to +\infty$ on a:

$$v_m(x) = d_m x + o(x)$$

H. Delange [6] a précisé ce résultat de la façon suivante:

Théorème A. Le fait que la fonction ξ (s) de Riemann n'a aucun zéro de partie réelle égale à 1 implique que, lorsque $x \to +\infty$:

$$v_m(x) = d_m x + o \left[\sqrt{x} (\log \log x)^m \right]$$

Dans un second article, H. Delange [7] a amélioré le résultat précédent de la façon suivante:

Théorème B. Le fait que la fonction μ (n) de Möbius satisfait à :

$$\sum_{1 \le n \le x} \mu(n) = O\left[x e^{-\alpha \sqrt{\log x}}\right] \qquad (\alpha > 0)$$

implique que, lorsque $x \to +\infty$:

$$v_m(x) = d_m x + O\left[\frac{x^{\frac{1}{2}}(\log\log x)^{m-1}}{\log x}\right],$$

Nous nous proposons, dans ce qui suit, d'améliorer ce dernier résultat de Delange, en donnant un développement asymptotique de la différence $v_m(x) - d_m x$, et même mieux: nous nous sommes en effet aperçu que, grâce à une astuce simple, on peut transformer l'expression de $v_m(x)$ de façon à le rendre calculable par la méthode de l'hyperbole. Nous montrerons également, en appendice, comment notre méthode permet de retrouver de façon simple le résultat de Rényi et le théorème A de Delange.

2. Etude du cas m = 1.

En raison de la grande difficulté technique, nous traitons d'abord le cas m = 1, pour traiter ensuite le cas $m \ge 2$ de façon plus sommaire ¹⁰).

¹⁰⁾ Le cas m=0 est le cas bien connu des « quadratfrei ». Alors $d_0=\frac{6}{\pi^2}$ et $v_0(x)=Q(x)=\frac{6}{\pi^2}x+O[V\bar{x}\exp{(-C(\log x)\alpha(\log\log x)\beta}]$, où C>0 et $\alpha>0$. L'hypothèse de Riemann donne un reste bien meilleur: $O\left[x^{\frac{2}{5}}+\epsilon\right]$, pour tout $\epsilon>0$.

Théorème 5. Pour tout entier $k \ge 2$ nous avons, lorsque $x \to +\infty$:

$$v_1(x) = d_1 x + \sum_{j=2}^k A_j \frac{x^{\frac{1}{2}}}{(\log x)^j} + O\left[\frac{x^2}{(\log x)^{k+1}}\right], \dots$$

où la suite des constantes $A_2, A_3, ..., A_k, ...$ est définie par :

$$A_j = (-1)^{j-1} \frac{d^{j-1}}{ds^{j-1}} \left(\frac{\zeta(s)}{s\zeta(2s)} \right) s = \frac{1}{2}$$

Le théorème 5 est une conséquence du résultat plus précis suivant:

Théorème 6. Soit π (t) le nombre de nombres premiers $\leq t$, et soient C, α , β trois constantes $(C>0, \alpha>0)$ telles que, lorsque $t \to +\infty$, on ait :

$$\pi(t) = \operatorname{li}(t) + O\left[t \exp\left(-C(\log t)^{\alpha}(\log\log t)^{\beta}\right)\right].$$

Soit Q(t) le nombre d'entiers « quadratfrei » $\leq t$, et soit $R(t) = Q(t) - \frac{6}{\pi^2}t$. Alors, lorsque $x \to +\infty$, nous avons :

$$v_{1}(x) = d_{1}x - \frac{6}{\pi^{2}}x \int_{x}^{+\infty} \frac{t^{-\frac{3}{2}}}{\log t} dt + x^{\frac{1}{2}} \int_{1}^{\exp\left[C'(\log x)^{\alpha}\right]} \frac{t^{-\frac{2}{3}}R(t)}{\log x - \log t} dt + O\left[x^{\frac{1}{2}}\exp\left(-C'(\log x)^{\alpha'}(\log\log x)^{\beta'}\right)\right],$$

où C', α' , β' sont des constantes, avec C' > 0 et $\alpha' > 0$ [on peut prendre $\alpha' = \alpha^2$ et $\beta' = 2\alpha\beta$]

En admettant l'hypothèse de Riemann, on peut considérablement améliorer le terme-erreur du théorème 6, le remplaçant par $O\left[x^{\frac{8}{17}} + \epsilon\right]$, grâce au:

Théorème 7. Moyennant l'hypothèse de Riemann, nous avons pour $x \to +\infty$:

$$v_1(x) = d_1 x - \frac{6}{\pi^2} x \int_{x}^{+\infty} \frac{t^{-\frac{3}{2}} - t^{-\frac{5}{3}}}{\log t} dt + x^{\frac{1}{2}} \int_{1}^{x^{\frac{5}{17}}} \frac{t^{-\frac{3}{2}} R(t)}{\log x - \log t} dt -$$

$$-x^{\frac{1}{3}} \int_{1}^{\frac{5}{x^{17}}} \frac{t^{-\frac{4}{3}}}{\log x - \log t} dt + O\left[x^{\frac{8}{17}} \exp\left(K \frac{\log x}{\log \log x}\right)\right],$$

où K est une constante absolue > 0.

DÉMONSTRATION DES THÉORÈMES 5 A 7.

a) Calcul préparatoire. Dans toute la suite, la lettre q désignera exclusivement les entiers « quadratfrei ». Les entiers n tels que $\Omega(n) - \omega(n) = 1$ sont ceux dont la décomposition en facteurs premiers comporte un seul exposant égal à 2, tous les autres exposants étant égaux à 1. Autrement dit, nous avons $\Omega(n) - \omega(n) = 1$ si et seulement si $n = p^2 q$, avec $p \nmid q$. Par suite:

$$v_{1}(x) = \sum_{\substack{p^{2}q \leq x \\ p \neq q}} 1 = \sum_{\substack{p^{2}q \leq x \\ p \neq q}} 1 - \sum_{\substack{p^{2}q \leq x \\ p \mid q}} 1 = \sum_{\substack{p^{2}q \leq x \\ p \mid q}} 1 - \sum_{\substack{p^{3}q \leq x \\ p \mid q}} 1 = \sum_{\substack{p^{3}q \leq x \\ p \mid q}} 1 - \sum_{\substack{p^{3}q \leq x \\ p \mid q}} 1 + \sum_{\substack{p^{3}q \leq x \\ p \mid q}} 1 = \sum_{\substack{p^{2}q \leq x \\ p \mid q}} 1 - \sum_{\substack{p^{3}q \leq x \\ p \neq q}} 1 + \sum_{\substack{p^{4}q \leq x \\ p \neq q}} 1 = \dots = \sum_{\substack{p^{2}q \leq x \\ p \neq q}} 1 \cdot \sum_{\substack{p^{4}q \leq x \\ p$$

Il est clair que la dernière expression obtenue est une somme finie, car nous avons $\sum_{prq \le x} 1 = 0$ dès que $r > \frac{\log x}{\log 2}$. En définitive nous avons:

(10)
$$v_1(x) = \sum_{r \ge 2} (-1)^r V_r(x), \quad \text{avec } V_r(x) = \sum_{\substack{p,q \\ p^r q \le x}} 1.$$

b) Démonstration des théorèmes 6 et 7. Puisque $V_r(x)$ est la fonction sommatoire du produit de convolution de la fonction caractéristique de l'ensemble des « quadratfrei » par la fonction caractéristique des puissances $r^{\text{ièmes}}$ des nombres premiers, nous pouvons calculer $V_r(x)$ par la méthode de l'hyperbole. Cependant dans le cas présent, et pour des raisons de commodité dans la rédaction, nous procéderons d'une manière légèrement différente. D'après la relation (10), $v_1(x)$ est la fonction sommatoire du produit de convolution de la fonction caractéristique de l'ensemble des « quadratfrei » par la fonction arithmétique valant $(-1)^r$ si $n = p^r$ (où $r \ge 2$), et zéro si n n'est pas de cette forme. Posant:

$$\pi^*(x) = \sum_{\substack{p^r \le x \\ r \ge 2}} (-1)^r = \text{li}(\sqrt{x}) + \eta^*(x),$$

nous obtenons par application de la méthode de l'hyperbole, avec $1 < \xi < x$:

$$(11) \quad v_1(x) = \sum_{\substack{p^r \leq \xi \\ r \geq 2}} Q\left(\frac{x}{p^r}\right) (-1)^r + \sum_{\substack{q \leq \frac{x}{\xi}}} \pi^*\left(\frac{x}{q}\right) - \pi^*(\xi) Q\left(\frac{x}{\xi}\right)$$

Nous avons d'abord:

$$\sum_{\substack{p^r \leq \xi \\ r \geq 2}} Q\left(\frac{x}{p^r}\right) (-1)^r = \frac{6x}{\pi^2} \sum_{\substack{p^r \leq \xi \\ r \geq 2}} (-1)^r p^r + \sum_{\substack{p^r \leq \xi \\ r \geq 2}} R\left(\frac{x}{p^r}\right) (-1)^r =$$

$$= \frac{6x}{\pi^2} \sum_{p} \frac{1}{p(p+1)} - \frac{6x}{\pi^2} \int_{\xi}^{+\infty} \frac{d\pi^*(t)}{t} + \sum_{\substack{p^r \leq \xi \\ r \geq 2}} (-1)^r R\left(\frac{x}{p^r}\right).$$

En effectuant, de la même manière que dans les démonstrations des théorèmes 1 à 3, deux intégrations par parties successives sur l'intégrale $\int_{\xi}^{+\infty} t^{-1} d\pi^*(t)$, nous obtenons:

(12)
$$\sum_{\substack{p^r \le \xi \\ r \ge 2}} Q\left(\frac{x}{p^r}\right) (-1)^r = \frac{6x}{\pi^2} \sum_{p} \frac{1}{p(p+1)} + \sum_{\substack{p^r \le \xi \\ r \ge 2}} (-1)^r R\left(\frac{x}{p^r}\right) -$$

$$-\frac{6x}{\pi^2} \int_{\xi}^{+\infty} \frac{t^{-\frac{3}{2}}}{\log t} dt + \frac{6x}{\pi^2} \frac{\eta^*(\xi)}{\xi} - \frac{6x}{\pi^2} \int_{\xi}^{+\infty} \frac{\eta^*(t)}{t^2} dt$$

De la même manière nous obtenons, avec a quelconque tel que 0 < a < 1:

(13)
$$\sum_{q \leqslant \frac{x}{\xi}} \pi^* \left(\frac{x}{q} \right) = \sum_{q \leqslant \frac{x}{\xi}} \eta^* \left(\frac{x}{q} \right) + \int_a^{\frac{x}{\xi}} \operatorname{li}\left(\sqrt{\frac{x}{t}} \right) dQ(t) = \frac{6x}{\pi^2} \cdot \frac{\operatorname{li}\left(\sqrt{\xi} \right)}{\xi} +$$

$$+ \operatorname{li}\left(\sqrt{\xi}\right) R\left(\frac{x}{\xi}\right) + \sum_{q \leqslant \frac{x}{\xi}} \eta^*\left(\frac{x}{q}\right) + \frac{6x}{\pi^2} \int_{\xi}^{\overline{a}} \frac{t^{-\frac{3}{2}}}{\log t} dt + \sqrt{x} \int_{a}^{\overline{\xi}} \frac{t^{-\frac{3}{2}} R(t)}{\log x - \log t} dt$$

Il résulte de la relation (13) que la somme des deux derniers termes du dernier membre de (13) ne dépend pas de a (0<a<1): par conséquent la relation (13) reste vraie avec a = 1.

Enfin, il est clair que:

$$(14) -\pi^*(\xi) Q\left(\frac{x}{\xi}\right) = -\frac{6x}{\pi^2} \cdot \frac{\operatorname{li}\left(\sqrt{\xi}\right)}{\xi} - \frac{6x}{\pi^2} \frac{\eta^*(\xi)}{\xi} - R\left(\frac{x}{\xi}\right) \operatorname{li}\left(\sqrt{\xi}\right) - R\left(\frac{x}{\xi}\right) \eta^*(\xi).$$

D'après (11), nous obtenons par addition des relations (12), (13) [avec a=1] et (14):

$$(15) v_{1}(x) = \frac{6x}{\pi^{2}} \sum_{\rho} \frac{1}{p(p+1)} - \frac{6x}{\pi^{2}} \int_{\chi}^{+\infty} \frac{t^{-\frac{3}{2}}}{\log t} dt + \sqrt{x} \int_{1}^{\frac{x}{5}} \frac{t^{-\frac{3}{2}}R(t)}{\log x - \log t} dt - \frac{6x}{\pi^{2}} \int_{\chi}^{+\infty} \frac{\eta^{*}(t)}{t^{2}} dt + \sum_{\substack{\rho^{r} \leqslant \xi \\ 2}} (-1)^{r} R\left(\frac{x}{\rho^{r}}\right) + \sum_{\substack{q \leqslant \frac{\chi}{x}}} \eta^{*}\left(\frac{x}{q}\right) - R\left(\frac{x}{\xi}\right) \eta^{*}(\xi).$$

De la même manière que nous avons obtenu le théorème 2 à partir de la relation (4), nous obtenons le théorème 6 à partir de la relation (15) en prenant, avec une constante convenable C' > 0:

$$\xi = x \exp \left[-C' (\log x)^{\alpha} \right],$$

et en remarquant que la formule:

$$\pi(t) = \operatorname{li}(t) + O\left[t \exp\left(-C(\log t)^{\alpha}(\log\log t)^{\beta}\right)\right]$$

a pour conséquence les relations:

$$\eta^*(t) = O\left[\sqrt{t} \exp\left(-C''(\log t)^{\alpha}(\log\log t)^{\beta}\right)\right]$$

et

$$R(t) = O\left[\sqrt{t} \exp\left(-C^{\prime\prime\prime} (\log t)^{\alpha} (\log \log t)^{\beta}\right)\right]$$

où C'' et C''' sont des constantes convenables > 0.

L'hypothèse de Riemann, qui est équivalente à la relation $\eta^*(t) = \text{li}(\sqrt[3]{t}) + O(t^{\frac{1}{4}} \log t)$ implique en outre ¹¹):

$$R(t) = O\left[t^{\frac{2}{5}} \exp\left(K' \frac{\log x}{\log \log x}\right)\right]; K' \text{ constante } > 0.$$

Dans ce cas, un calcul élémentaire fait d'après la relation (15) montre que le meilleur choix de ξ est $\xi = x^{\frac{12}{17}}$, et le théorème 7 découle alors des relations (10) et (15) et des estimations de η (t) et de R (t).

c) Démonstration du théorème 5. Le théorème 5 s'obtient à partir du théorème 6 de la même manière que nous avons obtenu le théorème 1 à partir du théorème 2. En effet, on peut développer suivant les puissances de $\frac{1}{\log x}$ les deuxième et troisième termes du second membre de la relation donnant v_1 (x) [dans l'énoncé du théorème 6], et nous obtenons immédiatement, pour tout $k \ge 1$:

$$v_1(x) = d_1 x + \sum_{j=1}^k A_j \frac{x^{\frac{1}{2}}}{(\log x)^j} + O\left[\frac{x^{\frac{1}{2}}}{(\log x)^{k+1}}\right],$$

avec:

(16)
$$A_{j} = \frac{6}{\pi^{2}} (j-1)! (-1)^{j} 2^{j} + \int_{1}^{+\infty} t^{-\frac{3}{2}} (\log t)^{j-1} R(t) dt.$$

Nous pouvons dès à présent remarquer que $A_1 = 0$, $A_2 \neq 0$. En effet nous avons (cf. [7]):

$$\int_{0}^{x} (v_{m}(t) - d_{m}t) dt \sim -\frac{8}{3} \zeta \left(\frac{1}{2}\right) \frac{1}{(m-1)!} \cdot \frac{x^{\frac{3}{2}} (\log \log x)^{m-1}}{(\log x)^{2}}$$

Il en résulte ici:

$$A_1 = 0 \ et \ A_2 = -4\zeta\left(\frac{1}{2}\right).$$

Nous allons donner, pour les A_j , une expression plus simple ¹²) que celle de la relation (16):

Pour s complexe, $\Re(s) > 1$, nous avons:

$$\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^{+\infty} \frac{\left|\mu(n)\right|}{n^s} = \int_{\frac{1}{2}}^{+\infty} \frac{dQ(t)}{t^s} = s \int_{1}^{+\infty} \frac{Q(t)}{t^{s+1}} dt$$

¹²⁾ En août 1968, nous avions démontré le développement asymptotique [les A_j étant donnés par la relation (16)] et fait le calcul effectif de A_1 et de A_2 . M. H. Delange a bien voulu nous indiquer que les A_j donnés par la relation (16) prenaient en fait la forme plus simple de la relation (17).

donc, pour $\Re(s) > 1$:

$$\int_{1}^{+\infty} \frac{R(t)}{t^{s+1}} dt = \frac{\zeta(s)}{s\zeta(2s)} - \frac{6}{\pi^{2}} \frac{1}{s-1}$$

L'intégrale étant absolument convergente pour $\Re(s) \ge \frac{1}{2}$, l'égalité ci-dessus a lieu pour $\Re(s) \ge \frac{1}{2}$. On voit ainsi que:

$$\int_{1}^{+\infty} t^{-\frac{3}{2}} (\log t)^{r} R(t) dt = (-1)^{r} F^{(r)} \left(\frac{1}{2}\right)$$

avec

$$F(s) = \frac{\zeta(s)}{s\zeta(2s)} - \frac{6}{\pi^2} \cdot \frac{1}{s-1}$$

En définitive:

(17)
$$A_{j} = (-1)^{j-1} \frac{d^{j-1}}{ds^{j-1}} \left(\frac{\zeta(s)}{s \zeta(2s)} \right) s = \frac{1}{2}$$

Ainsi

$$A_1 = 2 \frac{\zeta(\frac{1}{2})}{\zeta(1)} = 0$$
, et $A_2 = -\lim_{s \to \frac{1}{2}} \frac{\zeta(s)}{(s - \frac{1}{2}) s \zeta(2s)} = -4 \zeta(\frac{1}{2})$

3. Etude du cas $m \ge 2$.

Au prix de difficultés techniques énormes, notre méthode permet de trouver, pour la différence $v_m(x) - d_m x$, un développement asymptotique (analogue au théorème 5), ainsi que des formes plus précises (analogues aux théorèmes 6 et 7). Signalons seulement le développement asymptotique ¹³):

Théorème 8. Il existe dans $\mathbf{R}[X]$ une suite de polynômes $P_2, P_3, ..., P_k, ...$ de degré m-1, tels que, pour tout entier $k \geq 2$ on ait lorsque $x \to +\infty$:

$$v_m(x) = d_m x + \sum_{j=2}^k \frac{P_j(\log \log x)}{(\log x)^j} + O\left[\frac{(\log \log x)^{m-1}}{(\log x)^{k+1}}\right]$$

¹³⁾ Pour plus de détails sur ce développement asymptotique, cf. [10].

Indiquons le principe de la démonstration: il s'agit d'établir, dans le cas général $m \ge 1$, des résultats analogues à la relation (10). Posons, pour tous entiers $r_1 \ge 2$, $r_2 \ge 1$:

$$Vr_{1,r_{2}}(x) = \sum_{\substack{pr_{1} \ p'r_{2} \ q \leq x}} 1.$$

Posons de même, pour tous entiers $r_1 \ge 2$, $r_2 \ge 2$, $r_3 \ge 2$:

$$Vr_{1,r_{2,r_{3}}}(x) = \sum_{\substack{pr_{1} \ p'r_{2} \ p''\neq p'' \neq p'' \neq p}} 1$$

Les seuls entiers n tels que $\Omega(n) - \omega(n) = 2$ sont ceux de la forme $n = p^3 q$, $p \not\nmid q$, ou bien $n = p^2 p'^2 q$, $p \neq p'$, $p \not\mid q$, $p' \not\mid q$. Les seuls entiers n tels que $\Omega(n) - \omega(n) = 3$ sont ceux de la forme $n = p^4 q$, $p \not\mid q$, ou bien $n = p^3 p'^2 q$, $p \neq p'$, $p \not\mid q$, $p' \not\mid q$, ou bien $n = p^2 p'^2 p''^2 q$, $p \neq p' \neq p'' \neq p$, $p \not\mid q$, $p' \not\mid q$, ou bien $n = p^2 p'^2 p''^2 q$, $p \neq p' \neq p'' \neq p$, $p \not\mid q$, $p' \not\mid q$, $p' \not\mid q$.

On obtient alors, par la même méthode qui a servi à démontrer la relation (10):

$$v_{2}(x) = \sum_{r \geq 3} (-1)^{r+1} V_{r}(x) + \sum_{r_{1} \geq 2, r_{2} \geq 2} (-1)^{r_{1}+r_{2}} V_{r_{1},r_{2}}(x),$$

$$v_{3}(x) = \sum_{r \geq 4} (-1)^{r} V_{r}(x) + \sum_{r_{1} \geq 3, r_{2} \geq 2} (-1)^{r_{1}+r_{2}+1} V_{r_{1},r_{2}}(x) + \sum_{r_{1} \geq 2, r_{2} \geq 2, r_{3} \geq 2} (-1)^{r_{1}+r_{2}+r_{3}} V_{r_{1},r_{2},r_{3}}(x),$$

et des formules analogues dans le cas $m \ge 4$.

Puisqu'on connaît la répartition asymptotique des entiers dont le nombre de facteurs premiers est donné (cf. [11]), il en résulte que chacune des quantités $V_r(x)$, $V_{r_1,r_2}(x)$, $V_{r_1,r_2,r_3}(x)$ est calculable par la méthode de l'hyperbole, et le calcul se poursuit exactement comme dans la démonstration des théorèmes 5 à 7.

4. Remarques.

a) Notre méthode s'applique à des fonctions arithmétiques plus générales que $\Omega(n) - \omega(n)$: soit f(n) une fonction arithmétique additive et « prime-independant », c'est-à-dire que si p et p' sont premiers et α est entier ≥ 0 , alors $f(p^{\alpha}) = f(p'^{\alpha})$. Supposons de plus que la fonction $f(p^{\alpha})$ [de la variable α] soit non-décroissante, à valeurs entières ≥ 0 , et s'annule pour $\alpha = 1$. Alors nous pourrons donner, pour le nombre $v_m(x)$ des entiers $n \leq x$ tels que f(n) = m un développement asymptotique analogue à celui

du théorème 8, la différence $v_r(x) - d_r x$ étant ainsi équivalente au produit d'une constante par $x^{\frac{1}{r+1}} (\log x)^{-2}$, où r est le plus grand entier α tel que $f(p^{\alpha}) = 0$.

b) La démonstration du développement asymptotique mentionné cidessus, et a fortiori ceux des théorèmes 5 et 8 (et, pareillement, ceux des théorèmes 1 et 4), peut se faire en n'utilisant le théorème des nombres premiers que sous sa forme asymptotique, c'est-à-dire:

$$\pi(x) = \sum_{r=1}^{k} (r-1)! \frac{x}{(\log x)^{r}} + O\left[\frac{x}{(\log x)^{k+1}}\right].$$

IV. MÉTHODE ANALYTIQUE

La méthode de l'hyperbole, parce qu'elle est élémentaire, a une efficacité limitée (la rédaction complète de la démonstration du théorème 8, faisable pour m=2, devient horrible pour $m\geq 3$).

H. Delange, par des méthodes analytiques, retrouve tous les résultats contenus dans cet article de façon plus rapide et plus générale, et va beaucoup plus loin. Trois articles à ce sujet [8], [9] et [10] sont à paraître en 1970 dans *Acta Arithmetica*.

APPENDICE

Nous montrons ici comment on peut retrouver, de façon élémentaire, le résultat de Renyi (et même un peu mieux) et le théorème A de Delange.

Théorème. Notons toujours par $v_m(x)$ le nombre des $n \le x$ tels que $\Omega(n) - \omega(n) = m$. Alors :

a) Sans utiliser aucune estimation de π (x) [autre que l'estimation banale π (x) = O(x)], nous avons:

$$v_m(x) = d_m x + O(\sqrt{x} \log x).$$

b) L'estimation de Tchebicheff $\pi(x) = O\left(\frac{x}{\log x}\right)$ implique :

$$v_m(x) = d_m x + O(\sqrt{x} (\log \log x)^m)$$