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entières > 0 en dessous de l'hyperbole d'équation uv x, et que la
formule (2) constitue, pour le calcul de cette somme, un procédé dont la
signification géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n)
h (n) 1. Alors /(«) d (n) nombre des diviseurs de n. Il est alors

bien connu 2) que la formule (1) donne:

£ d(n) x log x + O (x)
l^n^x

tandis que la méthode de l'hyperbole donne, avec £ yjx:

(3) £ d(ri) x logx + (2y — l)x + O (x j,
l^n^x \ J

y désignant la constante d'Euler.
Cependant on démontre, par des méthodes analytiques, qu'en fait le terme-

erreur de (3) est O (xc), pour une constante convenable c < % (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de l'hyperbole,
certains résultats nouveaux, que l'on ne peut guère rendre plus précis par des

méthodes analytiques (cependant voir ci-dessous IV).

II. Sur un théoreme de Hardy et Ramanujan

1. Soit co (jî) le nombre des diviseurs premiers distincts de l'entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x -> + oo :

Y œ (n) x log log x + B x + O

1^»^* \log xj
où B est une constante [5 y+ X (log (1 — J) + j,), la sommation étant

P

étendue à tous les p premiers3)]. De plus, Hardy et Ramanujan ([4], p. 347)

annoncent que ce théorème asymptotique peut être amélioré «par des

méthodes transcendantes ». Cependant, à notre connaissance, aucune telle
amélioration n'a été publiée à ce jour.

Nous démontrons ici:

2) Voir par exemple [12] ou [13].
3) Dans tout cet article, les lettres p, p', p", désigneront exclusivement des nombres premiers; la

lettre q désignera exclusivement les entiers « quadratfrei ».
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Théorème 1. Pour deux entiers donnés k, l (k2i 1), premiers entre eux,

soit œkJ(n) le nombre des diviseurs premiers distincts p de n tels que p /

(mod /<). ,4/0, lorsque x -> + 00, on a pour tout entier m ^ 1 :

_ xloglogX Cr X r x
<*u(") " "W + +ïw ''+ '

LÄ^r". '

Bk i étant une constante dépendant de le et l, (p (k) étant la fonction d Euler,

et les constantes Cr étant définies de la façon suivante en notant par {t} la

partie fractionnaire 4) de t) :

CL {0 (log ty 1 dt (-1y-1
b

d*_ /(5-i)Ç(5)\
r dsr\ s S=1

[et en particulier C1 y — 1].

Le théorème 1 est une conséquence du résultat plus précis suivant:

Théorème 2. Soit 7ikJ(x) le nombre de nombres premiers p ^ x tels que

p m l (mod k), et soient C, oc, ß, trois constantes (avec C>0, a>0) telles

que, lorsque x -+ + 00, on ait :

1

*k,ix)
(pifi).

2

+ O[x exp(- C (log x)a (loglog x)")] 5).
log t

Alors il existe une constante C' > 0 telle que, pour x + 00 ;

X

^ x log log X X P { t}
X (n) 7JT— + Bk,ix 77t 7577 7—7- dt +

(p (k) (p (k) J r (log x -log
1

+ O [x exp - C" (log x)a (log log x)')]

En admettant l'hypothèse de Riemann généralisée concernant les séries L
relatives aux caractères modulo k [hypothèse que nous désignerons désormais

par (Hk)\, on peut considérablement améliorer le terme-erreur du
théorème 2, grâce au:

4) Dans toute la suite, [r] désignera la partie entière du nombre réel t, et {t} t — [t] sa partie
fractionnaire.

5) Dans le cas général, on sait que cette relation est vraie avec a ß -t- (cf. [14], p. 46). Dans le cas

k i — 1 de tous les nombres premiers, on sait qu'on peut prendre a
3

ß — h (cf. [15]).
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Théorème 3. Moyennant l'hypothèse (Hk), on a lorsque x -> + °o :

1 _4
(log X) 3

x loglog xr
Z œk,l(n)— 777 1- Bk [X —

1^»^* <PW9WJ
{0

r (log x -log
dt +

+ O

î
- 2 in

3 3

X (logx)

2. Démonstration des théorèmes 1 à 3.

a) Calcul préparatoire. Soient x et Ç tels que 1 < £ < x. Alors:

v-\ xloglogx x
(4) Z œkM) 77T + BKlx —

l^n^x <P (^) Ç (fi) c

{0
r (logx-logO

dt

— x
Vk,i (0

dt + {-> nk,i(0 + Z >?m

1 ^j^--J— ç

I
p=l (mod k)

ou on a pose
li (*)

%,( O) —77X + 1k,, (x) 6)
q>(k)

En effet, nous avons tout d'abord, par application de la méthode de l'hyperbole:

(5) Z œk,i(n) Z
p l (mod k) ~ «

%.l(ö

Soit a tel que 1 < a < inf (£, 2). Alors:

Z 1

_
* dnKi(0 7tm (£) f nKl (0

p=l(mod k) P
+ (it

1 Ii (Ö
+

IkAO
+

cp(k) Ç

li (0 dt

cp k)/2 +
1k,i(

dt.

r dt r dt
6) Pour x > l, \i(x) v. p. I z Alors li (x) — 1 h O (1), lorsque x—> +

J log t d log t
0 2
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Mais

Ii (t) dt
_

Ii (a)
_

li(Ö f dt
_

li(a)
_

Ii (0
t2 a Ç

+ J tlogt a Ç

D'où:
+ loglog £ - log log a

£ 1 log log £ ,,(£)
- + H(6) ~ 7TX r

p =1 (mod k) P (p vv C

tfkj (0

avec

(7) ?k,i —
f ^,i(0,. 1 HO) log log a

—-— H • ——
t cp(k) a (p (k)

Des relations (6) et (7) on déduit que Bk l ne dépend pas de a, mais
seulement de k et /. D'autre part:

'x\ 1

^ nk'l\jJ <p(k)
Ç

1 li[V +
ç

Mais

-s \J
li [~)d[i] m)+ x

r(logx-log0
dt

li (0+ x(loglogx -loglog Ç) -x {t}
t (log X -log 0

dt.

D'où:

(8) S —W 9(k)
110 + ~~77T(loglogx-loglogO

(p(k)

{0
<p(k)J t2(logx -log/)

dt+ E nJ-
1 Vi

{
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La relation (4) s'obtient alors en portant (6) et (8) dans le second membre
de (5), et après avoir tenu compte de:

E
P — s

p=l (mod k)

Z \ ~ Z
P—% P P—Ç

p=l (mod k) p l(modk)

b) Le théorème 2 implique le théorème 1. En effet, pour 1

nous avons

log t 1
0 < —— ^ -logx 2

de sorte que

y/x

{0 dt
t2 (log x— logt) logx J t2

i
^ illf y

t2V,=o v°g*

f»^_i°ïiY'd,=

logx ^

logx

dt — Y —r Cr —
Lo(iogxr+i

-t- 00

— f — Ylogxj 2

Jx

log t\ dtH-

•Jx

l°g X

{t} /log
log X J t2 ylog

dt

7 c.
f=1 (logxy

+
(logx)"

puisqu'il existe une constante Dm (ne dépendant que de m) telle que, pour
0 < r < m — Ion ait:

V X

{t} (logxYx-l(\ogtydt<Dmy-^L
t vx

et que d'autre part

z
log X

Comme, pour tout r ^ 1, nous avons:

o
logx

-((tolö"')' M "«P(-C'(logx)-Ooglogx)«)=o(^),

il en résulte bien que le théorème 2 implique le théorème 1.
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2C—>--j- 00

c) Démonstration du théorème 2. Soit £ £ (x) tel que lim £ —

lim I _j_ QQ Nous avons:

1k,i (0

A*—>-f OO

+ oo

dt O j* iexp(-C(logOVloglogOO^

0 [exp — C (log 0" (log log £)ß) (log O1 a (loglog 0 ]
et

X Ik,I

- —

O £ ^expf-C(log-) (loglogî
J/ V

o

o

exp (-C (log 0*(loglog £)^)log x ß>0

exp - C (log xf (log log xf) log - I x si < 0

D'après la relation (4) on voit donc, en prenant Ç y/x, que le théorème 2

est valable avec toute constante C" telle que C' < 2~a C.

d) Démonstration du théorème 3. Moyennant l'hypothèse (Hk) nous
avons: rjk l (£) O £ log £), et par suite les majorations

-+- <

^d,-o(j t
~ t

et d'autre part

(x

— J—ç

Z o
log ,et<7\lkA0 0(V^log 0 0

log ip^4
p=l (mod k)

£ V
Le terme-erreur est donc d'ordre minimal dès que et log x sont de

log£ V £

même ordre, ce qui est réalisé dès que Ç x' (log x)*. D'où le théorème 3.

3. De la démonstration du théorème 3 on tire facilement le résultat
suivant:
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Corollaire 1. Soit £ (x) une fonction réelle définie sur [1, + oo[, vérifiant

00
1 ^ £ 00 ^ x, et lim -j- t + co. Alors, si l'hypothèse (Hk) est

x~^* + oo X lOg X

vraie, nous avons pour x -> + oo :

(x) 1 xz
Pr'^l.v, (i>J P(k) lOgXj

p I (mod k) x
ÏÔÔ

El*.
t2

En particulier, lorsque £ (x) o (x), nous avons :

M É(*) 1

*>-;«(*) U>j 21ogx q>(k)
p =1 (mod k)

Il nous semble raisonnable de conjecturer que la relation

(Y) Ç(x) 1

P^i(x) IPJ 2 log x <p(k)
p l (mod k)

reste vraie lorsque £ (x) x^ (log x)^
[et même chaque fois que

1
r ,log£(x) log£(x)- < lim mf ^ lim sup < 1

2 *_+«, l°ëx x^+oo log*

Si cette conjecture est vraie, on peut améliorer le théorème 3, en obtenant

un terme-erreur qui est o \yâ (log x)*], et même mieux.

4. Extensions des théorèmes 1 à 3.

a) De même que pour la somme £ cok J(n), la méthode de l'hyperbole
l^n^x

permet d'obtenir des résultats analogues aux théorèmes 1 à 3 (développement

asymptotique et reste intégral) pour la somme £ (u>k,i(ri))h, h entier
1 t^n^x

>2. Signalons seulement le développement asymptotique)7:

Théorème 4. Soit h un entier ^1.7/ existe dans R [X] un polynôme PQ

1

de degré h et de coefficient du terme du plus haut degré et une suite de
cp(k\

7) H. Delange a récemment obtenu un tel résultat, et par une méthode différente et plus générale, pour
toutes les fonctions additives à valeurs entières ^ 0, et valant 1 sur l'ensemble des nombres premiers.
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polynômes Pu P2, ",Pn ••• de degré h — 1 tels que, lorsque x + co, on

ait pour tout m ^ 1 :

V, vm £ Fr(loglogx) f(log log x)"-1"

,1,, K' (B)) " r?o + 0
(log,)—-.

Indiquons le principe de la démonstration, pour simplifier, dans le cas

h — 2. Nous avons:

(9) (cok,i (n))2 («) + 2 Z 1
»

P2/n

où p2 décrit les entiers décomposables en produit de deux facteurs premiers
distincts et / (mod &). Comme on connaît le développement asympto-
tique 8) de ^ 1, la démonstration s'achève par la méthode de l'hyperbole,

P2~X
grâce à la relation (9), de manière analogue au théorème 1.

b) Il est clair que les théorèmes asymptotiques 1 à 4 s'étendent à une

large classe de fonctions fortement additives9): c'est le cas pour toutes les

fonctions totalement additives f (n) pour lesquelles il existe une fonction
réelle 9 (x) « suffisamment dérivable » (par exemple de classe C1) et «

suffisamment régulière» (par exemple 6 (x) xA, A > 0; 0 (x) — (logx)A,
A > 0) telle que f(p) — 9(p) Xk,i(p)> °ù Xk,i est fonction caractéristique
des nombres premiers ~ / (mod k). On peut alors calculer les développements

de Yj )h> h entier 1.

Par exemple, si Sx{ri) est la somme des puissances 2ièmes des diviseurs
premiers de n (2>0), nous pouvons trouver une suite de constantes a1?

a2,ar, ne dépendant que de A et telles que, lorsque x -> + oo, on ait
pour tout entier m ^ 2 :

V c ^ _ ^A + 1) x"+1 £ *A + 1

Z A («) ~"j + Z 7j ^l^n^x A+l logx r=2 (logx)'

III. Sur un théorème de Rényi et Delange

1. Soient co(n)lenombre des diviseurs premiers distincts de l'entier
positif n, et Q (n) le nombre total des facteurs dans la décomposition de n
en facteurs premiers. Autrement dit, si ^ p2a'~pra\ où les pt sont

8) Cf. [11],
9) Une fonction arithmétique additive est dite fortement additive si /(p) - f(p) pour tous p premieret ïyi entier i~z 1 •

(logx)m+1
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