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enticres > 0 en dessous de I’hyperbole d’équation uv = x, et que la for-
mule (2) constitue, pour le calcul de cette somme, un procédé dont la signi-
fication géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n) =

= h(n) = 1. Alors f(n) = d(n) = nombre des diviseurs de n. Il est alors
bien connu ) que la formule (1) donne:

> d(n) =xlogx +0(x),

l<=n=x

tandis que la méthode de I'hyperbole donne, avec & = /x:

1
(3) > d(n)=xlogx+(2y—1)x+0<x2),
1=n=x
v désignant la constante d’Euler.
Cependant on démontre, par des méthodes analytiques, qu’en fait le terme-
erreur de (3) est O (x°), pour une constante convenable ¢ < 1 (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de I’hyperbole, cer-
tains résultats nouveaux, que ’on ne peut guere rendre plus précis par des
méthodes analytiques (cependant voir ci-dessous 1V).

II. SUR UN THEOREME DE HARDY ET RAMANUJAN

1. Soit w (n) le nombre des diviseurs premiers distincts de ’entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x — -+ oo:

p
2 CO(n)leoglogxthx+0<___,>,
1=nz=x logx

ol B est une constante [B =y + > (log(1—,) + 1), la sommation étant

p
étendue a tous les p premiers 3)]. De plus, Hardy et Ramanujan ([4], p. 347)
annoncent que ce théoréme asymptotique peut €tre amélioré « par des
méthodes transcendantes ». Cependant, a notre connaissance, aucune telle
amélioration n’a été publiée a ce jour.
Nous démontrons ici:

2) Voir par exemple [12] ou [13]. "
3) Dans tout cet article, les lettres p, p’, p”, ... désigneront exclusivement des nombres premiers; la
lettre g désignera exclusivement les entiers « quadratfrei ».
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THEOREME 1. Pour deux entiers donnés k,l(k=1), premiers entre eux,
soit wy, (n) le nombre des diviseurs premiers distincts p de n tels quep = [
(mod k). Alors, lorsque x — -+ oo, on a pour tout entier m = 1:

xloglogx " C, X [ X }
w, (n) = ——— + By x + . + 0| —=3 |>
géx 1) o (k) ST e (k) (logx)” (log x)"*+1

By, étant une constante dépendant de k et I, ¢ (k) étant la fonction d’Euler,
et les constantes C, étant définies de la facon suivante (en notant par {t} la
partie fractionnaire *) de t) :

+ o

B e (0
t r ds" S s=1

1

let en particulier C; =y — 1].
Le théoréme 1 est une conséquence du résultat plus précis suivant:

THEOREME 2. Soit 7, [(x) le nombre de nombres premiers p < x tels que
p = [ (mod k), et soient C, «, B, trois constantes (avec C>0, «a>0) telles
que, lorsque x — -+ o0, on ait:

= ! x dat 0 cd *(logl E
nk,loc)—q)(k)flogﬁ [x exp (— C (log x)* (loglog )*)] *).

Alors il existe une constante C' > 0 telle que, pour x - -+ oo :

vx
, xloglogx X ¢
Z wk’l(}’l) = — + Bk’lx - (k)J\ tz { } dt +
1

1 e x ¢ (k) ® (logx —logt)

+ O [x exp (—C’ (log x)* (loglog x)*)] .

En admettant ’hypothése de Riemann généralisée concernant les séries L
relatives aux caractéres modulo £ [hypothése que nous désignerons désor-
mais par (H,)], on peut considérablement améliorer le terme-erreur du
théoréme 2, grice au:

.4 Dans toute la suite, [¢] désignera la partie entiére du nombre réel ¢, et {¢} = ¢ — [t] sa partie frac-
tionnaire.

5) Dans le cas général, on sait que cette relation est vraie avec ¢ = B = i— (cf. [14], p. 46). Dans le cas
3
5

k = 1 = 1 de tous les nombres premiers, on sait qu’on peut prendre ¢ = © , § = — {— (cf. [15]).
o
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THEOREME 3. Moyennant 1’hypothése (H,), on a lorsque x — + oo :

L e
x3(log x) 3
xloglogx X {t}
w,,(n)=————+B —_— dt +
lix W) =@ ST o (k) * (log x —log 1)
1
2 1
3 3
+ O |x (logx)

2. Démonstration des théoréemes 1 a 3.

a) Calcul préparatoire. Soient x et & tels que 1 < ¢ < x. Alors:

x

@ » ) xloglog x + B ”
w, () = ——— X — dt —
S ¢ (k) e <k) £ <logx—log £)
+
M (1) X b
_xj ol dt+{}’7kl(é)+ 2. ’7k,z<—.> — Y. {*},
t? ¢ e J p=¢ (P
& T ¢ p=1 (mod k)
ol on a posé
li (x)
T 1 (x) = o (k) T iy (x) ©)

En effet, nous avons tout d’abord, par application de la méthode de I’hyper-
bole:

(5) 1é§éx @y, (n) : péé [‘EJ + 1éz_]:'_é_z Ty (;) — [Zg‘J T, (S)

P =1 (mod k)

Soit a tel que 1 < a < inf (¢, 2). Alors:

¢ 4
p;(‘j 1 _ Jd”k,z ® _ T () n Jnk,zz(t) dt —
p=l (—i;tod k) p t é t
S
_ 1 .li(f} sz(f) Jh(t) dt J My (1) it
o(k) ¢ ¢ (k) t* t* '

dt dt
6) Pour x > 1, li(x) = v. p. jk)_gt . Alors li (x) = ngt + O (1), lorsque x — + oo.
0 2
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Mais
4 4
li(dt li(a) 1li(&) dt li(a) 1i(&)
3 a & tlogt a ¢
+ loglog & —logloga.
D’ou:
+ 0
1 loglo ¢ (t
) péé 1 log gé+Bk,l+nk,z()_f ﬂk,lz)dt’
p=1 (mod k) P o (k) ¢ : t
avec
+ o
t 1 li(a logloga
) B,, ___J ’7k,12()d[ n . ()_ g1log .
t pk) a @ (k)

Des relations (6) et (7) on déduit que B, ;, ne dépend pas de a, mais
seulement de k et /. D’autre part:

X 1 X X
Z Tkl <—> B Z li <—> + Z Nkl <—> .
1=j=3 J ¢ (k) 1==3 J 1=j=7 J

Mais I
. 3 3 []
(X (X x|, I
léjé%h (;) = Jh <?) dlt] = [—J li(&) + xJ Zlogx —Togh) dt =
1 1
3 |
- [zc_:l li(¢) + x(loglogx —loglog &) — xJ i} dt I
£ t* (logx —logt) |
1
D’ou
X 1 [x X
g ) = —— |2 Sl - -
® T m (J) e u 1i(9) + s (oglog x —loglog &
T ¢
F
X t X
} qo(k)f P logx—logn ' T2 M (?)
1 = J=- |
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La relation (4) s’obtient alors en portant (6) et (8) dans le second membre
de (5), et aprés avoir tenu compte de:

D RS

pP=1 (mod k) pP=1 (mod k) p=l (mod k)

b) Le théoréme 2 implique le théoréme 1. En effet, pour 1 <t < /X,
nous avons

logt
0« g

A
b =

10g X
de sorte que

VE Jx

t t logt\™*
o ot g E [ U ey
t“(logx —logt) log\ t log x
1
vx .
X t * [logt\" _
-2 Wy (e ) b c, -
log x t* \,=o \logx ,e logx)”rl
1
X tY"~! /logt t logt\"
_ {2} y (g { } ogt\ . _
log x t* =0 \logx logx ,>m log x

- Z c.— +o|l—=

5 T (logx)y (logx)"*! |’
puisqu’il existe une constante D, (ne dépendant que de m) telle que, pour
0r<m-—1 on ait:

(log x)"

NE:

E o) =y
Comme, pour tout r = I, nous avons:
ﬂ = 0( : ), et xexp(—C'(logx)*(loglogx)’) = o( x ),
log x (log x)" (log x)"

f —= (logt)"dt < D,

et que d’autre part

il en résulte bien que le théoréme 2 implique le théoréme 1.
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¢) Démonstration du théoréme 2. Soit & = &(x) tel que lim & =

X—>—+4 00

{ X
lim ¥ _ o & Nous avons:

X—>-- 00 & .
+o + 0
| 1 g
| e - 0[ | e (~Ctog oy togtoz dt] )
z 4

— 0 [exp(— C (log & (loglog &) (log &) ~ (loglog &)~*]

M G) - 0[ ZZ;—,exp<—c<1og ;) <loglog ;)ﬂﬂ _

et

1= j= 1=

ol ®

g O | exp(— C(log &)*(loglog &)*)log :? xsif>0

[ X ,
( 0, Lexp(—-C(Iogx)"‘(loglogx)”)logE x sif<O0.

D’aprés la relation (4) on voit donc, en prenant & = \/ x, que le théoréme 2
est valable avec toute constante C’ telle que C' < 27* C.

d) Démonstration du théoréme 3. Moyennant 1’hypothése (H,) nous
avons: 1, , (§) = O (/& log &), et par suite les majorations

+ o0 + oo

Mie, (1) _3 log &
J »"tlz dt=O<J t 2logtdt)=0<\/_€_>,
: :

c Mg | <~ ) = —= 10gX ], i
. J Ve

*

1= j=—

[al

et d’autre part

x| _ ¢ B —O(/F _of 5
pég {p} ¢ <1Og 6>’et {é} et (€)= 0 (e log &) = O<10g é>'

p=1l (mod k)

Le terme-erreur est donc d’ordre minimal dés que log x sont de

¢ X
et —
gl /e
méme ordre, ce qui est réalisé dés que ¢ = x* (log x)*. D’ot le théoréme 3. |

3. De la démonstration du théoréme 3 on tire facilement le résultat
suivant:
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Corollaire 1. Soit ¢ (x) une fonction réelle définie sur [1, 4+ oo, vérifiant

: ¢ (x :
1 £¢8(x) £x, et lim —;lj = 4 0. Alors, si ’hypothése (H,) est
x4+ X° logx®

vraie, nous avons pour x — -+ o0o:

+ o0
X 1 X t
2. {—} ~ : {—} dt.
p=é(x) P @ (k) logx t
p=1l (modk) x
E(x)

En particulier, lorsque ¢ (x) = o (x), nous avons:

X £ (x) . 1
pé%:(X) {p} 2logx o (k)

p=l (mod k)

Il nous semble raisonnable de conjecturer que la relation

X & (x) . 1
Pé%:(x) {p} 2logx ¢ (k)

p=I (mod k)

reste vraie lorsque & (x) = x¥ (log x)%
[et m&me chaque fois que

1 logd(x) . log & (%) <1 }

— < lim inf ———2 < lim sup
ot lOgX vt lOZX
Si cette conjecture est vraie, on peut améliorer le théoréme 3, en obtenant
. 2 4. A .
un terme-erreur qui est o [x* (log x)*], et méme mieux.

4. Extensions des théoréemes 1 a 3.

a) De méme que pour la somme » @, (n), la méthode de ’hyperbole

l=n=x
permet d’obtenir des résultats analogues aux théorémes 1 a 3 (développe-
ment asymptotique et reste intégral) pour la somme ), (w, (n))", & entier

l<=n=x

>2. Signalons seulement le développement asymptotique )’ :

THEOREME 4. Soit h un entier = 1. 1l existe dans R [X] un polynéme P,

et une suite de

de degré h et de coefficient du terme du plus haut degré o
P\K),

7) H. Delange a récemment obtenu un tel résultat, et par une méthode différente et plus générale, pour
toutes les fonctions additives & valeurs entiéres = 0, et valant 1 sur I’ensemble des nombres premiers.
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polynémes Py, P,, ..., P,, ... de degré h — 1 tels que, lorsque x — - o0, on

ait pour tout m = 1:

-1
™ P,.(loglogx) [(loglog x)" ]
B _ r + 0
l_é;éx (@1 ™) ) rgo (logx) (log x)™*

Indiquons le principe de la démonstration, pour simplifier, dans le cas
h = 2. Nous avons:

9) (CUk,z (n))z = Wy, (n) + 2 Z 1,

len

oll p, décrit les entiers décomposables en produit de deux facteurs premiers
distincts et = /(mod k). Comme on connait le développement asympto-

tique ®) de Y 1, la démonstration s’achéve par la méthode de I’hyperbole,
Po=X

grace a la relation (9), de maniére analogue au théoréme 1.

b) Il est clair que les théorémes asymptotiques 1 a 4 s’étendent a une
large classe de fonctions fortement additives®): c’est le cas pour toutes les
fonctions totalement additives f'(n) pour lesquelles il existe une fonction
réelle 6 (x) « suffisamment dérivable » (par exemple de classe C') et « suffi-
samment réguliére » (par exemple 0 (x) = x*, 1 > 0; 0 (x) = (log x)%,
A > 0) telle que f(p) = 0(p) xi(p), ol y;; est la fonction caractéristique
des nombres premiers = / (mod k). On peut alors calculer les développe-

ments de ) (/(n))", h entier = 1.
1 <n<x . . .
Par exemple, si S;(n) est la somme des puissances Aiémes des diviseurs

premiers de n (4>0), nous pouvons trouver une suite de constantes a,
Gy, «evs &, ... D€ dépendant que de A et telles que, lorsque x — + o0, on ait
pour tout entier m = 2:

/1+1 xl+1 m xl+1 x/l-f—l
Z Sl(n)z(:( )° — 4+ 0| — .
| L A+1 logx = (logx)

III. SUR UN THEOREME DE RENYI ET DELANGE

1. Soient w (n) le nombre des diviseurs premiers distincts de I’entier
positif n, et  (n) le nombre total des facteurs dans la décomposition de n
en facteurs premiers. Autrement dit, si n = p,* p,* ... p,*, ou les p; sont

8) Cf. [11].
9) Une fonction arithmétique additive est dite fortement additive si f(p™) = f(p) pour tous p premier
et m entier = 1.
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