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SUR QUELQUES APPLICATIONS
DE LA «MÉTHODE DE L'HYPERBOLE» DE DIRICHLET

A LA THÉORIE DES NOMBRES PREMIERS

Bahman Saffari

I. Introduction

1. La «méthode de l'hyperbole» que nous exposons ci-après sur

quelques exemples est une méthode élémentaire donnant de bons résultats

dans les théorèmes asymptotiques. Certaines questions de théorie des

nombres se ramènent au problème suivant: donner une évaluation asympto-

tique, lorsque x -> + oo, de F (x) J] f (n)> 0^ •/ est « Pr°duit

de convolution » de deux fonctions arithmétiques *) g et h, définie par:

f(n)

(g*h)(n)y h ^
Connaissant G(x) £ g(k)et H (x) £ (/), on peut évaluer (x)
grâce à: î

(1) F(X)= y g(k)H(f)= y ~Y
l^k^x \KJ \l J

Les résultats que l'on obtient par application de (1) sont au plus aussi bons

que ceux obtenus par le procédé suivant (méthode de l'hyperbole):
Pour tout £ tel que 1 ^ ^ x, on a:

(2) F (x) y g(k)H^)+y

Chacun des trois termes du second membre de (2) fournit un terme-erreur,
le terme-erreur global résultant alors de l'addition de ces trois termes-

erreurs. On choisit Ç de manière que le terme-erreur global devienne le
meilleur possible. Le nom de la « méthode de l'hyperbole » vient de ce que
F(x) est la somme des g (k) h (/) où {k, ï) décrit les points à coordonnées

1) Par « fonction arithmétique » nous entendons ici une fonction à valeurs réelles ou complexes, et
définie sur les entiers ^ 1.
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entières > 0 en dessous de l'hyperbole d'équation uv x, et que la
formule (2) constitue, pour le calcul de cette somme, un procédé dont la
signification géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n)
h (n) 1. Alors /(«) d (n) nombre des diviseurs de n. Il est alors

bien connu 2) que la formule (1) donne:

£ d(n) x log x + O (x)
l^n^x

tandis que la méthode de l'hyperbole donne, avec £ yjx:

(3) £ d(ri) x logx + (2y — l)x + O (x j,
l^n^x \ J

y désignant la constante d'Euler.
Cependant on démontre, par des méthodes analytiques, qu'en fait le terme-

erreur de (3) est O (xc), pour une constante convenable c < % (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de l'hyperbole,
certains résultats nouveaux, que l'on ne peut guère rendre plus précis par des

méthodes analytiques (cependant voir ci-dessous IV).

II. Sur un théoreme de Hardy et Ramanujan

1. Soit co (jî) le nombre des diviseurs premiers distincts de l'entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x -> + oo :

Y œ (n) x log log x + B x + O

1^»^* \log xj
où B est une constante [5 y+ X (log (1 — J) + j,), la sommation étant

P

étendue à tous les p premiers3)]. De plus, Hardy et Ramanujan ([4], p. 347)

annoncent que ce théorème asymptotique peut être amélioré «par des

méthodes transcendantes ». Cependant, à notre connaissance, aucune telle
amélioration n'a été publiée à ce jour.

Nous démontrons ici:

2) Voir par exemple [12] ou [13].
3) Dans tout cet article, les lettres p, p', p", désigneront exclusivement des nombres premiers; la

lettre q désignera exclusivement les entiers « quadratfrei ».
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