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‘ SUR QUELQUES APPLICATIONS
DE LA « METHODE DE L’HYPERBOLE » DE DIRICHLET
A LA THEORIE DES NOMBRES PREMIERS

Bahman SAFFARI

I. INTRODUCTION

1. La « méthode de I’hyperbole » que nous exposons ci-apreés sur
quelques exemples est une méthode élémentaire donnant de bons résultats
dans les théorémes asymptotiques. Certaines questions de théorie des
nombres se raménent au probléme suivant: donner une évaluation asympto-
tique, lorsque x — + oo, de F(x) = > f(n), ou f est le «produit

l=n=x

de convolution » de deux fonctions arithmétiques ') g et A, définie par:

Fn) = (geh)(m) = X g () h (%) |

kin

Connaissant G (x) = Y g(k)et H(x)= ) h(l), on peut évaluer F (x)

grice a: le=kss 1=l=x
(1) Fix) = Y g(lc)H<x> = ¥ h(l)G(f)
1<k=x k 1=]=x l

Les résultats que I’on obtient par application de (1) sont au plus aussi bons
que ceux obtenus par le procédé suivant (méthode de I’hyperbole):
Pour tout & tel que 1 < & < x, on a:

2 Fx= Y g(k)HG>+ 5 h(l)GC)-G(@H@).

1=k=¢ 1 === ¢
Chacun des trois termes du second membre de (2) fournit un terme-erreur,
le terme-erreur global résultant alors de l’addition de ces trois termes-
erreurs. On choisit ¢ de maniére que le terme-erreur global devienne le
meilleur possible. Le nom de la « méthode de I’hyperbole » vient de ce que
F (x) est la somme des g (k) & (I) ou (k, /) décrit les points & coordonnées

’ 1) Par «fonction arithmétique » nous entendons ici une fonction & valeurs réelles ou complexes, et
définie sur les entiers = 1. ’
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enticres > 0 en dessous de I’hyperbole d’équation uv = x, et que la for-
mule (2) constitue, pour le calcul de cette somme, un procédé dont la signi-
fication géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n) =

= h(n) = 1. Alors f(n) = d(n) = nombre des diviseurs de n. Il est alors
bien connu ) que la formule (1) donne:

> d(n) =xlogx +0(x),

l<=n=x

tandis que la méthode de I'hyperbole donne, avec & = /x:

1
(3) > d(n)=xlogx+(2y—1)x+0<x2),
1=n=x
v désignant la constante d’Euler.
Cependant on démontre, par des méthodes analytiques, qu’en fait le terme-
erreur de (3) est O (x°), pour une constante convenable ¢ < 1 (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de I’hyperbole, cer-
tains résultats nouveaux, que ’on ne peut guere rendre plus précis par des
méthodes analytiques (cependant voir ci-dessous 1V).

II. SUR UN THEOREME DE HARDY ET RAMANUJAN

1. Soit w (n) le nombre des diviseurs premiers distincts de ’entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x — -+ oo:

p
2 CO(n)leoglogxthx+0<___,>,
1=nz=x logx

ol B est une constante [B =y + > (log(1—,) + 1), la sommation étant

p
étendue a tous les p premiers 3)]. De plus, Hardy et Ramanujan ([4], p. 347)
annoncent que ce théoréme asymptotique peut €tre amélioré « par des
méthodes transcendantes ». Cependant, a notre connaissance, aucune telle
amélioration n’a été publiée a ce jour.
Nous démontrons ici:

2) Voir par exemple [12] ou [13]. "
3) Dans tout cet article, les lettres p, p’, p”, ... désigneront exclusivement des nombres premiers; la
lettre g désignera exclusivement les entiers « quadratfrei ».
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