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‘ SUR QUELQUES APPLICATIONS
DE LA « METHODE DE L’HYPERBOLE » DE DIRICHLET
A LA THEORIE DES NOMBRES PREMIERS

Bahman SAFFARI

I. INTRODUCTION

1. La « méthode de I’hyperbole » que nous exposons ci-apreés sur
quelques exemples est une méthode élémentaire donnant de bons résultats
dans les théorémes asymptotiques. Certaines questions de théorie des
nombres se raménent au probléme suivant: donner une évaluation asympto-
tique, lorsque x — + oo, de F(x) = > f(n), ou f est le «produit

l=n=x

de convolution » de deux fonctions arithmétiques ') g et A, définie par:

Fn) = (geh)(m) = X g () h (%) |

kin

Connaissant G (x) = Y g(k)et H(x)= ) h(l), on peut évaluer F (x)

grice a: le=kss 1=l=x
(1) Fix) = Y g(lc)H<x> = ¥ h(l)G(f)
1<k=x k 1=]=x l

Les résultats que I’on obtient par application de (1) sont au plus aussi bons
que ceux obtenus par le procédé suivant (méthode de I’hyperbole):
Pour tout & tel que 1 < & < x, on a:

2 Fx= Y g(k)HG>+ 5 h(l)GC)-G(@H@).

1=k=¢ 1 === ¢
Chacun des trois termes du second membre de (2) fournit un terme-erreur,
le terme-erreur global résultant alors de l’addition de ces trois termes-
erreurs. On choisit ¢ de maniére que le terme-erreur global devienne le
meilleur possible. Le nom de la « méthode de I’hyperbole » vient de ce que
F (x) est la somme des g (k) & (I) ou (k, /) décrit les points & coordonnées

’ 1) Par «fonction arithmétique » nous entendons ici une fonction & valeurs réelles ou complexes, et
définie sur les entiers = 1. ’
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enticres > 0 en dessous de I’hyperbole d’équation uv = x, et que la for-
mule (2) constitue, pour le calcul de cette somme, un procédé dont la signi-
fication géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n) =

= h(n) = 1. Alors f(n) = d(n) = nombre des diviseurs de n. Il est alors
bien connu ) que la formule (1) donne:

> d(n) =xlogx +0(x),

l<=n=x

tandis que la méthode de I'hyperbole donne, avec & = /x:

1
(3) > d(n)=xlogx+(2y—1)x+0<x2),
1=n=x
v désignant la constante d’Euler.
Cependant on démontre, par des méthodes analytiques, qu’en fait le terme-
erreur de (3) est O (x°), pour une constante convenable ¢ < 1 (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de I’hyperbole, cer-
tains résultats nouveaux, que ’on ne peut guere rendre plus précis par des
méthodes analytiques (cependant voir ci-dessous 1V).

II. SUR UN THEOREME DE HARDY ET RAMANUJAN

1. Soit w (n) le nombre des diviseurs premiers distincts de ’entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x — -+ oo:

p
2 CO(n)leoglogxthx+0<___,>,
1=nz=x logx

ol B est une constante [B =y + > (log(1—,) + 1), la sommation étant

p
étendue a tous les p premiers 3)]. De plus, Hardy et Ramanujan ([4], p. 347)
annoncent que ce théoréme asymptotique peut €tre amélioré « par des
méthodes transcendantes ». Cependant, a notre connaissance, aucune telle
amélioration n’a été publiée a ce jour.
Nous démontrons ici:

2) Voir par exemple [12] ou [13]. "
3) Dans tout cet article, les lettres p, p’, p”, ... désigneront exclusivement des nombres premiers; la
lettre g désignera exclusivement les entiers « quadratfrei ».
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THEOREME 1. Pour deux entiers donnés k,l(k=1), premiers entre eux,
soit wy, (n) le nombre des diviseurs premiers distincts p de n tels quep = [
(mod k). Alors, lorsque x — -+ oo, on a pour tout entier m = 1:

xloglogx " C, X [ X }
w, (n) = ——— + By x + . + 0| —=3 |>
géx 1) o (k) ST e (k) (logx)” (log x)"*+1

By, étant une constante dépendant de k et I, ¢ (k) étant la fonction d’Euler,
et les constantes C, étant définies de la facon suivante (en notant par {t} la
partie fractionnaire *) de t) :

+ o

B e (0
t r ds" S s=1

1

let en particulier C; =y — 1].
Le théoréme 1 est une conséquence du résultat plus précis suivant:

THEOREME 2. Soit 7, [(x) le nombre de nombres premiers p < x tels que
p = [ (mod k), et soient C, «, B, trois constantes (avec C>0, «a>0) telles
que, lorsque x — -+ o0, on ait:

= ! x dat 0 cd *(logl E
nk,loc)—q)(k)flogﬁ [x exp (— C (log x)* (loglog )*)] *).

Alors il existe une constante C' > 0 telle que, pour x - -+ oo :

vx
, xloglogx X ¢
Z wk’l(}’l) = — + Bk’lx - (k)J\ tz { } dt +
1

1 e x ¢ (k) ® (logx —logt)

+ O [x exp (—C’ (log x)* (loglog x)*)] .

En admettant ’hypothése de Riemann généralisée concernant les séries L
relatives aux caractéres modulo £ [hypothése que nous désignerons désor-
mais par (H,)], on peut considérablement améliorer le terme-erreur du
théoréme 2, grice au:

.4 Dans toute la suite, [¢] désignera la partie entiére du nombre réel ¢, et {¢} = ¢ — [t] sa partie frac-
tionnaire.

5) Dans le cas général, on sait que cette relation est vraie avec ¢ = B = i— (cf. [14], p. 46). Dans le cas
3
5

k = 1 = 1 de tous les nombres premiers, on sait qu’on peut prendre ¢ = © , § = — {— (cf. [15]).
o




— 208 —

THEOREME 3. Moyennant 1’hypothése (H,), on a lorsque x — + oo :

L e
x3(log x) 3
xloglogx X {t}
w,,(n)=————+B —_— dt +
lix W) =@ ST o (k) * (log x —log 1)
1
2 1
3 3
+ O |x (logx)

2. Démonstration des théoréemes 1 a 3.

a) Calcul préparatoire. Soient x et & tels que 1 < ¢ < x. Alors:

x

@ » ) xloglog x + B ”
w, () = ——— X — dt —
S ¢ (k) e <k) £ <logx—log £)
+
M (1) X b
_xj ol dt+{}’7kl(é)+ 2. ’7k,z<—.> — Y. {*},
t? ¢ e J p=¢ (P
& T ¢ p=1 (mod k)
ol on a posé
li (x)
T 1 (x) = o (k) T iy (x) ©)

En effet, nous avons tout d’abord, par application de la méthode de I’hyper-
bole:

(5) 1é§éx @y, (n) : péé [‘EJ + 1éz_]:'_é_z Ty (;) — [Zg‘J T, (S)

P =1 (mod k)

Soit a tel que 1 < a < inf (¢, 2). Alors:

¢ 4
p;(‘j 1 _ Jd”k,z ® _ T () n Jnk,zz(t) dt —
p=l (—i;tod k) p t é t
S
_ 1 .li(f} sz(f) Jh(t) dt J My (1) it
o(k) ¢ ¢ (k) t* t* '

dt dt
6) Pour x > 1, li(x) = v. p. jk)_gt . Alors li (x) = ngt + O (1), lorsque x — + oo.
0 2
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Mais
4 4
li(dt li(a) 1li(&) dt li(a) 1i(&)
3 a & tlogt a ¢
+ loglog & —logloga.
D’ou:
+ 0
1 loglo ¢ (t
) péé 1 log gé+Bk,l+nk,z()_f ﬂk,lz)dt’
p=1 (mod k) P o (k) ¢ : t
avec
+ o
t 1 li(a logloga
) B,, ___J ’7k,12()d[ n . ()_ g1log .
t pk) a @ (k)

Des relations (6) et (7) on déduit que B, ;, ne dépend pas de a, mais
seulement de k et /. D’autre part:

X 1 X X
Z Tkl <—> B Z li <—> + Z Nkl <—> .
1=j=3 J ¢ (k) 1==3 J 1=j=7 J

Mais I
. 3 3 []
(X (X x|, I
léjé%h (;) = Jh <?) dlt] = [—J li(&) + xJ Zlogx —Togh) dt =
1 1
3 |
- [zc_:l li(¢) + x(loglogx —loglog &) — xJ i} dt I
£ t* (logx —logt) |
1
D’ou
X 1 [x X
g ) = —— |2 Sl - -
® T m (J) e u 1i(9) + s (oglog x —loglog &
T ¢
F
X t X
} qo(k)f P logx—logn ' T2 M (?)
1 = J=- |
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La relation (4) s’obtient alors en portant (6) et (8) dans le second membre
de (5), et aprés avoir tenu compte de:

D RS

pP=1 (mod k) pP=1 (mod k) p=l (mod k)

b) Le théoréme 2 implique le théoréme 1. En effet, pour 1 <t < /X,
nous avons

logt
0« g

A
b =

10g X
de sorte que

VE Jx

t t logt\™*
o ot g E [ U ey
t“(logx —logt) log\ t log x
1
vx .
X t * [logt\" _
-2 Wy (e ) b c, -
log x t* \,=o \logx ,e logx)”rl
1
X tY"~! /logt t logt\"
_ {2} y (g { } ogt\ . _
log x t* =0 \logx logx ,>m log x

- Z c.— +o|l—=

5 T (logx)y (logx)"*! |’
puisqu’il existe une constante D, (ne dépendant que de m) telle que, pour
0r<m-—1 on ait:

(log x)"

NE:

E o) =y
Comme, pour tout r = I, nous avons:
ﬂ = 0( : ), et xexp(—C'(logx)*(loglogx)’) = o( x ),
log x (log x)" (log x)"

f —= (logt)"dt < D,

et que d’autre part

il en résulte bien que le théoréme 2 implique le théoréme 1.
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¢) Démonstration du théoréme 2. Soit & = &(x) tel que lim & =

X—>—+4 00

{ X
lim ¥ _ o & Nous avons:

X—>-- 00 & .
+o + 0
| 1 g
| e - 0[ | e (~Ctog oy togtoz dt] )
z 4

— 0 [exp(— C (log & (loglog &) (log &) ~ (loglog &)~*]

M G) - 0[ ZZ;—,exp<—c<1og ;) <loglog ;)ﬂﬂ _

et

1= j= 1=

ol ®

g O | exp(— C(log &)*(loglog &)*)log :? xsif>0

[ X ,
( 0, Lexp(—-C(Iogx)"‘(loglogx)”)logE x sif<O0.

D’aprés la relation (4) on voit donc, en prenant & = \/ x, que le théoréme 2
est valable avec toute constante C’ telle que C' < 27* C.

d) Démonstration du théoréme 3. Moyennant 1’hypothése (H,) nous
avons: 1, , (§) = O (/& log &), et par suite les majorations

+ o0 + oo

Mie, (1) _3 log &
J »"tlz dt=O<J t 2logtdt)=0<\/_€_>,
: :

c Mg | <~ ) = —= 10gX ], i
. J Ve

*

1= j=—

[al

et d’autre part

x| _ ¢ B —O(/F _of 5
pég {p} ¢ <1Og 6>’et {é} et (€)= 0 (e log &) = O<10g é>'

p=1l (mod k)

Le terme-erreur est donc d’ordre minimal dés que log x sont de

¢ X
et —
gl /e
méme ordre, ce qui est réalisé dés que ¢ = x* (log x)*. D’ot le théoréme 3. |

3. De la démonstration du théoréme 3 on tire facilement le résultat
suivant:
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Corollaire 1. Soit ¢ (x) une fonction réelle définie sur [1, 4+ oo, vérifiant

: ¢ (x :
1 £¢8(x) £x, et lim —;lj = 4 0. Alors, si ’hypothése (H,) est
x4+ X° logx®

vraie, nous avons pour x — -+ o0o:

+ o0
X 1 X t
2. {—} ~ : {—} dt.
p=é(x) P @ (k) logx t
p=1l (modk) x
E(x)

En particulier, lorsque ¢ (x) = o (x), nous avons:

X £ (x) . 1
pé%:(X) {p} 2logx o (k)

p=l (mod k)

Il nous semble raisonnable de conjecturer que la relation

X & (x) . 1
Pé%:(x) {p} 2logx ¢ (k)

p=I (mod k)

reste vraie lorsque & (x) = x¥ (log x)%
[et m&me chaque fois que

1 logd(x) . log & (%) <1 }

— < lim inf ———2 < lim sup
ot lOgX vt lOZX
Si cette conjecture est vraie, on peut améliorer le théoréme 3, en obtenant
. 2 4. A .
un terme-erreur qui est o [x* (log x)*], et méme mieux.

4. Extensions des théoréemes 1 a 3.

a) De méme que pour la somme » @, (n), la méthode de ’hyperbole

l=n=x
permet d’obtenir des résultats analogues aux théorémes 1 a 3 (développe-
ment asymptotique et reste intégral) pour la somme ), (w, (n))", & entier

l<=n=x

>2. Signalons seulement le développement asymptotique )’ :

THEOREME 4. Soit h un entier = 1. 1l existe dans R [X] un polynéme P,

et une suite de

de degré h et de coefficient du terme du plus haut degré o
P\K),

7) H. Delange a récemment obtenu un tel résultat, et par une méthode différente et plus générale, pour
toutes les fonctions additives & valeurs entiéres = 0, et valant 1 sur I’ensemble des nombres premiers.
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polynémes Py, P,, ..., P,, ... de degré h — 1 tels que, lorsque x — - o0, on

ait pour tout m = 1:

-1
™ P,.(loglogx) [(loglog x)" ]
B _ r + 0
l_é;éx (@1 ™) ) rgo (logx) (log x)™*

Indiquons le principe de la démonstration, pour simplifier, dans le cas
h = 2. Nous avons:

9) (CUk,z (n))z = Wy, (n) + 2 Z 1,

len

oll p, décrit les entiers décomposables en produit de deux facteurs premiers
distincts et = /(mod k). Comme on connait le développement asympto-

tique ®) de Y 1, la démonstration s’achéve par la méthode de I’hyperbole,
Po=X

grace a la relation (9), de maniére analogue au théoréme 1.

b) Il est clair que les théorémes asymptotiques 1 a 4 s’étendent a une
large classe de fonctions fortement additives®): c’est le cas pour toutes les
fonctions totalement additives f'(n) pour lesquelles il existe une fonction
réelle 6 (x) « suffisamment dérivable » (par exemple de classe C') et « suffi-
samment réguliére » (par exemple 0 (x) = x*, 1 > 0; 0 (x) = (log x)%,
A > 0) telle que f(p) = 0(p) xi(p), ol y;; est la fonction caractéristique
des nombres premiers = / (mod k). On peut alors calculer les développe-

ments de ) (/(n))", h entier = 1.
1 <n<x . . .
Par exemple, si S;(n) est la somme des puissances Aiémes des diviseurs

premiers de n (4>0), nous pouvons trouver une suite de constantes a,
Gy, «evs &, ... D€ dépendant que de A et telles que, lorsque x — + o0, on ait
pour tout entier m = 2:

/1+1 xl+1 m xl+1 x/l-f—l
Z Sl(n)z(:( )° — 4+ 0| — .
| L A+1 logx = (logx)

III. SUR UN THEOREME DE RENYI ET DELANGE

1. Soient w (n) le nombre des diviseurs premiers distincts de I’entier
positif n, et  (n) le nombre total des facteurs dans la décomposition de n
en facteurs premiers. Autrement dit, si n = p,* p,* ... p,*, ou les p; sont

8) Cf. [11].
9) Une fonction arithmétique additive est dite fortement additive si f(p™) = f(p) pour tous p premier
et m entier = 1.
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des nombres premiers distincts deux a deux et les «; des entiers > 1, alors
wm =retQ®m = a; + o, + ... + «,.. Onadonc 2 (n) > w (n), 'égalité
n’ayant lieu que pour les entiers « quadratfrei ».

A. Rényi [5] a montré que, pour tout entier m = 0, 'ensemble des
entiers »n pour lesquels Q (n) — w (n) = m posséde une densité d, (c.a.d.
que, st v,, (x) est le nombre des n < x tels que Q (n) — w (n) = m, alors
pour x — -+~ o0 on a:

V() = d,,x + o(x)

H. Delange [6] a précisé ce résultat de la fagon suivante:

THEOREME A. Le fait que la fonction £ (s) de Riemann n’a aucun zéro de
partie réelle égale a 1 implique que, lorsque x - + oo :

Vi (x) = d,x + o[{/x(loglogx)™]
Dans un second article, H. Delange [7] a amélioré le résultat précédent
de la fagon suivante:

THEOREME B. Le fait que la fonction u (n) de Mobius satisfait a :

S um) = 0[xe VR (4>0)

l=n=x

implique que, lorsque x — —+ oo :

x* (loglog x)™~ 1]

V(X)) =d,x + O{ logx

Nous nous proposons, dans ce qui suit, d’améliorer ce dernier résultat
de Delange, en donnant un développement asymptotique de la différence
v, (x) — d,x, et méme mieux: nous nous sommes en effet apergu que,
grace a4 une astuce simple, on peut transformer I’expression de v, (x) de
fagon a le rendre calculable par la méthode de I’hyperbole. Nous mon-
trerons également, en appendice, comment notre méthode permet de
retrouver de fagon simple le résultat de Rényi et le théoréme A de Delange.

2. Etude du cas m = 1.

En raison de la grande difficulté technique, nous traitons d’abord le
cas m = 1, pour traiter ensuite le cas m = 2 de fagon plus sommaire *°).

10) Lecasm = 0 est le cas bien connu des « quadratfrei ». Alors dp = —7%’ etvo(x) = QO (x) = —62— x +
T

4+ O [VXexp (—C (log x)¢ (log log x)B], ou C > 0 et & > 0. L’hypothése de Riemann donne un reste bien

2 v
meilleur: O [x5 T EJ , pour tout € > 0.
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THEOREME 5. Pour tout entier k = 2 nous avons, lorsque x — ~+ o0 :

1 1
k 2 2
W) =dix+ Y A 0|
‘/1 1 = J (IOgX)J (logx)k+1 2
ou la suite des constantes A,, As, ..., Ay, ... est définie par :
| odit s
AJ = (—1)']—1 i1 C() 1
ds’ sC(2s)/s =3

Le théoréme 5 est une conséquence du résultat plus précis suivant:

THEOREME 6. Soit n (t) le nombre de nombres premiers < t, et Soient
C, a, B trois constantes (C>0, a>0) telles que, lorsque t - -+ o0, on ait :

n(t) =1i(t) + O[texp(—C(logt)*(loglogt)?)].

Soit Q (t) le nombre d’entiers « quadratfrei» < t, et soit R(t) = Q(t) —

6
— t. Alors, lorsque x - -+ o0, nous avons :

72
+ 0 —% 1 ©xp [C’ (logx)¥] *—i—
6 t 3 t R(t
vi(x) =djx — —5x o dt 4+ X ®) dt +
T logt logx —logt
x 1

1
+ 0 [x exp(—C’(logx)* (10g10gx)’}')] )
ou C',o',B" sont des constantes, avec C' > 0 et o' > 0 [on peut prendre
o = o et f = 2up]

En admettant I’hypothése de Riemann, on peut considérablement
8

1 4 by — +
améliorer le terme-erreur du théoréme 6, le remplagant par O [x17 E],
grice au:

THEOREME 7. Moyennant [’hypothése de Riemann, nous avons pour
X— + oo

5
6 [ t_% fg t 7 —;R
— 2 i t
vi(x) =dix — —5x —  dt+x ) dt —
v/ logt logx — logt
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5
3 t R(t i7 log x
- x @ dt +0 | x"’ exp K——-—gi———
logx —log t loglog x

1

4

ot K est une constante absolue > 0.

DEMONSTRATION DES THEOREMES 5 A 7.

a) Calcul préparatoire. Dans toute la suite, la lettre g désignera exclusi-
vement les entiers « quadratfrei ». Les entiers n tels que Q (n) — o (n) = 1
sont ceux dont la décomposition en facteurs premiers comporte un seul
exposant €gal a 2, tous les autres exposants étant égaux a 1. Autrement dit,

nous avons Q (n) — w (n) = 1 si et seulement si n = p? g, avec p } q. Par
suite:

)= Y 1= > 1= Y 1= > 1- > 1=

rla=x p2q=x p2q=x p2g=x p3a=x
rYa pla PYa
= Y 1- Y1+ Y1= Y 1- Y 14+ ¥ 1=..=
qu_éx p3q_4_x p3qéx pzqéx p3qéx P4€1éx
plaq P4
=Y (-1y ¥ 1.
r=2 pra=x

Il est clair que la derniére expression obtenue est une somme finie,

log x .
car nous avons » 1==0 dé que r > . En définitive nous avons:
g8 log 2
(10) vi(x) = Y (=) V,(x), avec V,(x) = > 1.
2 b,q

prq=x

b) Démonstration des théorémes 6 et 7. Puisque V,(x) est la fonction
sommatoire du produit de convolution de la fonction caractéristique de
I’ensemble des « quadratfrei » par la fonction caractéristique des puissances
r’*™ des nombres premiers, nous pouvons calculer ¥, (x) par la méthode
de I’hyperbole. Cependant dans le cas présent, et pour des raisons de com-
modité dans la rédaction, nous procéderons d’une maniére légérement
différente. D’aprés la relation (10), v, (x) est la fonction sommatoire du
produit de convolution de la fonction caractéristique de I’ensemble des
« quadratfrei » par la fonction arithmétique valant (—1)" si n = p” (ol
r=2), et zéro si n n’est pas de cette forme. Posant:

e e o e
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nr(x) = ¥ (=D =1{/%) + 71" (x),

pF=x
r>2

nous obtenons par application de la méthode de I’hyperbole, avec 1 <
< &< x:

1y v = X Q( ) (=D + Z <E>—n*(€)QG)

rég
r>2 f

Nous avons d’abord:

6x
"Zéf Q ( ) ( l)r = 2 pl‘éé ( )r pr + péf R <-:—x—;> (— 1)r =
T p

r>2 r>2 r>2
+ o0

Sy LS 0L s (%),

n? » p(p+1) n : p’ézé

En effectuant, de la méme maniére que dans les démonstrations des théorémes

+ oo
1 a3, deux intégrations par parties successives sur I'intégrale ] t~rdn* (1),

g
nous obtenons:

x X
(12 X Q< )( 1) =—5>;“ G +1)+ 3 (—1)R<F>-—

pr=¢§ pr=¢
2 r>2
+o  _3 + o0
6x t 2 6x n* 6x *(t
_ dt+__2_f1(€)__E nz()dz
T logt T ¢ 7T t
g 4

De la méme maniére nous obtenons, avec a quelconque tel que 0 < a < 1:

o ()-8 o) on 5152,

q<§ Q<—§ a

SRR

X

3 3

| R X 6xf___ _J' 172 R (1)
i 1(\/6) ( ) Z’ ( ) logtdt +\/x logx - logt dt

Nk




— 218 —

Il résulte de la relation (13) que la somme des deux derniers termes du

dernier membre de (13) ne dépend pas de a (0<a<1): par conséquent la
relation (13) reste vraie avec a = 1.

Enfin, il est clair que:

6x 1i(J) 6xn*(®)

N 2
(14) -7 (é)Q(Zj) — : R

~ R @ li (& - R @ n* ().

D’aprés (11), nous obtenons par addition des relations (12), (13) [avec a=
=1] et (14):

+o0 3 5 3
6x 1 6x [t72 _ [ t72R(t
(15) vl(x)z—zz - — ~——dt+\/x 0 dt —
- 7 p(p+1) =n° Jlogt logx —logt
X 1

-—gf————" Oyy y <—1>'R<f;)+ y n*(f>—R(-’f)n*<f>.
T t e p —xr  \4 ¢
& r>2 9~z

De la méme maniére que nous avons obtenu le théoréme 2 a partir
de la relation (4), nous obtenons le théoréme 6 a partir de la relation (15)
en prenant, avec une constante convenable C’ > 0:

¢ = xexp[—C'(logx)*],
et en remarquant que la formule:
n(f) =1i(t) + O[texp (—C (logt)*(loglog1*)]
a pour conséquence les relations:

n*(@ = 0 [\/_t—exp (—- C" (logt)*(loglog t)”)]
et

R(f) = O[/Texp (—C" (logt)* (loglog 1)*)]

ou C” et C’'’ sont des constantes convenables > O.
L’hypothése de Riemann, qui est équivalente & la relation 5* (r) =
= 1i (\/7) + O (+* log t) implique en outre '!):

2 log x
R({) = 0| exp| K’ ; K/ constante > 0.
loglog x

11) Cf. [16].
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Dans ce cas, un calcul élémentaire fait d’aprés la relation (15) montre que
12

le meilleur choix de & est & = x17, et le théoréme 7 découle alors des rela-
tions (10) et (15) et des estimations de # (¢) et de R (¢).

c) Démonstration du théoréme 5. Le théoréme 5 s’obtient a partir du
théoréme 6 de la méme maniére que nous avons obtenu le théoréme 1 a
partir du théoréme 2. En effet, on peut développer suivant les puissances de

1
log x
donnant v, (x) [dans ’énoncé du théoréme 6], et nous obtenons immédia-
tement, pour tout £ = 1:

les deuxiéme et troisiéme termes du second membre de la relation

1 1

k ¥2 x3
' =d;x + A; -+ 0| —,
WO S X LA ogay [(long“]

+

avec:

(16) A; = %(j—l)!(—l)f 2+ Jt—; (log?))"* R(t) dt .

1

Nous pouvons des a présent remarquer que 4; = 0, 4, # 0. En effet
nous avons (cf. [7]):

3

J(Vm(t)—dmt) dt ~ — gg (1) 1 ) x2 (log]ogx)m—l
o

2) (m—1)! (log x)*

Il en résulte ici:
1
Al =0 et A2 - —4C<-).
2
Nous allons donner, pour les 4;, une expression plus simple '?) que
celle de la relation (16):
Pour s complexe, Ze (s) > 1, nous avons:

+ o

(O _ 5 k)] _ L "0

tS IS+1

dt

1 1
2

12) En aoiit 1968, nous avions démontré le développement asymptotique [les 4 ; étant donnés 1
relatiqn (16)] et fait le calcul effectif de 4] et de 42. M. H. Delange a bien voulu nou]s indiquer que lggrAd'
donnés par la relation (16) prenaient en fait la forme plus simple de la relation an. J
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donc, pour %e (s) > 1:

j? (1) £ (s) 6 1
s+1 dt = T2
t sC(2s) 7w*s—1

1

L’intégrale étant absolument convergente pour Ze (s) = 1, I’égalité ci-dessus
a lieu pour Ze (s) = 1. On voit ainsi que:

+ o

Jt“% (log)' R(H)dt = (—1)" F" G)

1

avec

Pt 6. 1

sC(2s) =w* s-—1

En définitive:

IV BN R{0
(17) A; = ( | 1" T <s§(2s)>
Ainsi

1
4, =29 0 et 4, = — 1im () — 4
(1) 1(8—-)85(2) |

3. Etude du cas m = 2.

Au prix de difficultés techniques énormes, notre méthode permet de
trouver, pour la différence v, (x) — d, x, un développement asympto-
tique (analogue au théoréme 5), ainsi que des formes plus précises (ana-
logues aux théorémes 6 et 7). Signalons seulement le développement asym-
ptotique *3):

THEOREME 8. 1/ existe dans R [X] une suite de polynémes P,, P,, ..., P,, ...
de degré m — 1, tels que, pour tout entier k = 2 on ait lorsque x — + o0 :

¢, P;(loglogx) 0 [(loglogx)"“l]

= d .
Y (%) m* %+ jZZ (log x)’ (log x)**1

|
1 13) Pour plus de détails sur ce développement asymptotique, cf. [10].
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Indiquons le principe de la démonstration: il s’agit d’établir, dans le
cas général m = 1, des résultats analogues a la relation (10). Posons, pour
tous entiers r; = 2, r, = 1:

Viir,(x) = ) 1.

pry p'Te g=X
p=£p’

Posons de méme, pour tous entiers ry = 2, 1, = 2, I3 = 2!
Viirars(x) = Y 1
pTy p'Ty pT3 q=X
PF#Dp £p"FED
Les seuls entiers 7 tels que Q (1) — @ (1) = 2 sont ceux de la forme n =
=p*qpkgoublenn=ppiqp#p,pkar g
Les seuls entiers n tels que Q (n) — w (1) = 3 sont ceux de la forme n
=p*q pkqg oubenn=p>p?q, p#p,pkqp g, oubienn
=p*pPptap#Ep #Fp Fp.p X P XN
On obtient alors, par la méme méthode qui a servi a démontrer la rela-
tion (10):

1) (X) = Ll: (_ 1)r+1 Vr (X) + Z (_ 1)r1+r2 Vr1,r2 (X) ’

3 ri=2,ra=2

I

l

~

v3(x) = ; (= V,x+ Y (=D (0 +

r 4 1> 3,ro>2

+

Z ( - 1)r1+r2+r3 Vr1,r2,r3 (x) )

P> 2,ro=>=2,r3>2

et des formules analogues dans le cas m = 4.

Puisqu’on connait la répartition asymptotique des entiers dont le nombre
de facteurs premiers est donné (cf. [11]), il en résulte que chacune des quan-
tités ¥, (x), V%), Vi ryrs(X) st calculable par la méthode de I’hyper-
bole, et le calcul se poursuit exactement comme dans la démonstration des
théorémes 5 a 7.

4. Remarques.

a) Notre méthode s’applique a des fonctions arithmétiques plus géné-
rales que Q (n) — w (n): soit f(n) une fonction arithmétique additive et
« prime-independant », c’est-a-dire que si p et p’ sont premiers et a est
entier = 0, alors f(p*) = f(p’®). Supposons de plus que la fonction f(p%)
[de la variable o] soit non-décroissante, a valeurs entiéres = 0, et s’annule
pour o = 1. Alors nous pourrons donner, pour le nombre v,, (x) des entiers
n < x tels que f(n) = m un développement asymptotique analogue a celui
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du théoréme 8, la différence v, (x) — d, x étant ainsi équivalente au pro-
1

duit d’une constante par x* * ! (log x) 2, ou r estle plus grand entier « tel
que f(p*) = 0.

b) La démonstration du développement asymptotique mentionné ci-
dessus, et a fortiori ceux des théorémes 5 et 8 (et, pareillement, ceux des
théorémes 1 et 4), peut se faire en n’utilisant le théoréme des nombres
premiers que sous sa forme asymptotique, c’est-a-dire:

( _Zk 01 X 0 X
0= 2, 00 4o |

IV. METHODE ANALYTIQUE

La méthode de ’hyperbole, parce qu’elle est élémentaire, a une effica-
cit¢ limitée (la rédaction compléte de la démonstration du théoréme &,
faisable pour m = 2, devient horrible pour m = 3).

H. Delange, par des méthodes analytiques, retrouve tous les résultats
contenus dans cet article de fagon plus rapide et plus générale, et va beau-
coup plus loin. Trois articles a ce sujet [8], [9] et [10] sont a paraitre en 1970
dans Acta Arithmetica.

APPENDICE

Nous montrons ici comment on peut retrouver, de fagon élémentaire,
le résultat de Renyi (et méme un peu mieux) et le théoréme A de Delange.

THEOREME. Notons toujours par v, (x) le nombre des n < x tels que
Q) — w(n) = m. Alors:

a) Sans utiliser aucune estimation de © (x) [autre que [’estimation banale
-1 (x) = O (x)], nous avons :

Vm(X) = dmx + O(\/Xlogx)

X
b) L ’estimation de Tchebicheff = (x) = O (1———> implique :
0og X

| Vm (%) = dnx + O (x(loglog x)")
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X
c) Le théoréme des nombres premiers [n (x) ~ @] implique :

V(X)) = d,x + o(y/x(loglogx)"™1).
Démonstration :
a) Reprenons les expressions V, (x), V,, ., (X), Vip vy ry (X), ... définies pré-

cédemment. Compte tenu de la relation Q (x) = % x -+ O (\/ x) [dont la
démonstration ne fait appel a aucune estimation de =z (x)], nous avons:

6 _ 1
Vrl’r2 ,,,,, rk(x) — Px Zp—(r1+r2+...+rk) + 0 <x Z l—z) +0 <\/x Z 7)
p

l>|x = yx

= constante x + O (\/x log x).

En utilisant alors la relation (10) et ses analogues [rencontrés au cours de
la démonstration du théoréme 8], on obtient par addition

Vu(x) = d,x + 0 (/Xlogx).

b) L’estimation de Tchebicheff = (x) = O (1 : ) implique:
og x

X
1=0 <1—— (loglog x)"_1>

<1 0gx

o (1) k

AV

X
Nous obtenons donc cette fois:

Viira,om (¥) = constante x + O[x Y I7*[ + O[{/x ) _;]z
1> V% =
o (l) =k o () =k

= constante x + O [/x (loglog x)"]
En utilisant alors la relation (10) et ses analogues, on obtient donc:
Vi (X) = d,,x + 0 ({/x(loglog x)™).

X

c) Le théoréme des nombres premiers [n (x) ~ } implique:
X

{ 1 X
(k—1)! logx

(loglogx)*~1 .

La relation v, (x) =d, x + o (\/x (loglog x)" (s’obtient alors de
fagon analogue a b), en remarquant que cette fois: Q (x) = & + o (V%)

2
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