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SUR QUELQUES APPLICATIONS
DE LA «MÉTHODE DE L'HYPERBOLE» DE DIRICHLET

A LA THÉORIE DES NOMBRES PREMIERS

Bahman Saffari

I. Introduction

1. La «méthode de l'hyperbole» que nous exposons ci-après sur

quelques exemples est une méthode élémentaire donnant de bons résultats

dans les théorèmes asymptotiques. Certaines questions de théorie des

nombres se ramènent au problème suivant: donner une évaluation asympto-

tique, lorsque x -> + oo, de F (x) J] f (n)> 0^ •/ est « Pr°duit

de convolution » de deux fonctions arithmétiques *) g et h, définie par:

f(n)

(g*h)(n)y h ^
Connaissant G(x) £ g(k)et H (x) £ (/), on peut évaluer (x)
grâce à: î

(1) F(X)= y g(k)H(f)= y ~Y
l^k^x \KJ \l J

Les résultats que l'on obtient par application de (1) sont au plus aussi bons

que ceux obtenus par le procédé suivant (méthode de l'hyperbole):
Pour tout £ tel que 1 ^ ^ x, on a:

(2) F (x) y g(k)H^)+y

Chacun des trois termes du second membre de (2) fournit un terme-erreur,
le terme-erreur global résultant alors de l'addition de ces trois termes-

erreurs. On choisit Ç de manière que le terme-erreur global devienne le
meilleur possible. Le nom de la « méthode de l'hyperbole » vient de ce que
F(x) est la somme des g (k) h (/) où {k, ï) décrit les points à coordonnées

1) Par « fonction arithmétique » nous entendons ici une fonction à valeurs réelles ou complexes, et
définie sur les entiers ^ 1.
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entières > 0 en dessous de l'hyperbole d'équation uv x, et que la
formule (2) constitue, pour le calcul de cette somme, un procédé dont la
signification géométrique est évidente.

2. Le premier exemple historique (Dirichlet [1]) est celui du cas g (n)
h (n) 1. Alors /(«) d (n) nombre des diviseurs de n. Il est alors

bien connu 2) que la formule (1) donne:

£ d(n) x log x + O (x)
l^n^x

tandis que la méthode de l'hyperbole donne, avec £ yjx:

(3) £ d(ri) x logx + (2y — l)x + O (x j,
l^n^x \ J

y désignant la constante d'Euler.
Cependant on démontre, par des méthodes analytiques, qu'en fait le terme-

erreur de (3) est O (xc), pour une constante convenable c < % (cf. par
exemple [2] et [3]).

3. Nous démontrons ci-dessous, par la méthode de l'hyperbole,
certains résultats nouveaux, que l'on ne peut guère rendre plus précis par des

méthodes analytiques (cependant voir ci-dessous IV).

II. Sur un théoreme de Hardy et Ramanujan

1. Soit co (jî) le nombre des diviseurs premiers distincts de l'entier
positif n. Hardy et Ramanujan [4] ont prouvé que, lorsque x -> + oo :

Y œ (n) x log log x + B x + O

1^»^* \log xj
où B est une constante [5 y+ X (log (1 — J) + j,), la sommation étant

P

étendue à tous les p premiers3)]. De plus, Hardy et Ramanujan ([4], p. 347)

annoncent que ce théorème asymptotique peut être amélioré «par des

méthodes transcendantes ». Cependant, à notre connaissance, aucune telle
amélioration n'a été publiée à ce jour.

Nous démontrons ici:

2) Voir par exemple [12] ou [13].
3) Dans tout cet article, les lettres p, p', p", désigneront exclusivement des nombres premiers; la

lettre q désignera exclusivement les entiers « quadratfrei ».
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Théorème 1. Pour deux entiers donnés k, l (k2i 1), premiers entre eux,

soit œkJ(n) le nombre des diviseurs premiers distincts p de n tels que p /

(mod /<). ,4/0, lorsque x -> + 00, on a pour tout entier m ^ 1 :

_ xloglogX Cr X r x
<*u(") " "W + +ïw ''+ '

LÄ^r". '

Bk i étant une constante dépendant de le et l, (p (k) étant la fonction d Euler,

et les constantes Cr étant définies de la façon suivante en notant par {t} la

partie fractionnaire 4) de t) :

CL {0 (log ty 1 dt (-1y-1
b

d*_ /(5-i)Ç(5)\
r dsr\ s S=1

[et en particulier C1 y — 1].

Le théorème 1 est une conséquence du résultat plus précis suivant:

Théorème 2. Soit 7ikJ(x) le nombre de nombres premiers p ^ x tels que

p m l (mod k), et soient C, oc, ß, trois constantes (avec C>0, a>0) telles

que, lorsque x -+ + 00, on ait :

1

*k,ix)
(pifi).

2

+ O[x exp(- C (log x)a (loglog x)")] 5).
log t

Alors il existe une constante C' > 0 telle que, pour x + 00 ;

X

^ x log log X X P { t}
X (n) 7JT— + Bk,ix 77t 7577 7—7- dt +

(p (k) (p (k) J r (log x -log
1

+ O [x exp - C" (log x)a (log log x)')]

En admettant l'hypothèse de Riemann généralisée concernant les séries L
relatives aux caractères modulo k [hypothèse que nous désignerons désormais

par (Hk)\, on peut considérablement améliorer le terme-erreur du
théorème 2, grâce au:

4) Dans toute la suite, [r] désignera la partie entière du nombre réel t, et {t} t — [t] sa partie
fractionnaire.

5) Dans le cas général, on sait que cette relation est vraie avec a ß -t- (cf. [14], p. 46). Dans le cas

k i — 1 de tous les nombres premiers, on sait qu'on peut prendre a
3

ß — h (cf. [15]).
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Théorème 3. Moyennant l'hypothèse (Hk), on a lorsque x -> + °o :

1 _4
(log X) 3

x loglog xr
Z œk,l(n)— 777 1- Bk [X —

1^»^* <PW9WJ
{0

r (log x -log
dt +

+ O

î
- 2 in

3 3

X (logx)

2. Démonstration des théorèmes 1 à 3.

a) Calcul préparatoire. Soient x et Ç tels que 1 < £ < x. Alors:

v-\ xloglogx x
(4) Z œkM) 77T + BKlx —

l^n^x <P (^) Ç (fi) c

{0
r (logx-logO

dt

— x
Vk,i (0

dt + {-> nk,i(0 + Z >?m

1 ^j^--J— ç

I
p=l (mod k)

ou on a pose
li (*)

%,( O) —77X + 1k,, (x) 6)
q>(k)

En effet, nous avons tout d'abord, par application de la méthode de l'hyperbole:

(5) Z œk,i(n) Z
p l (mod k) ~ «

%.l(ö

Soit a tel que 1 < a < inf (£, 2). Alors:

Z 1

_
* dnKi(0 7tm (£) f nKl (0

p=l(mod k) P
+ (it

1 Ii (Ö
+

IkAO
+

cp(k) Ç

li (0 dt

cp k)/2 +
1k,i(

dt.

r dt r dt
6) Pour x > l, \i(x) v. p. I z Alors li (x) — 1 h O (1), lorsque x—> +

J log t d log t
0 2
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Mais

Ii (t) dt
_

Ii (a)
_

li(Ö f dt
_

li(a)
_

Ii (0
t2 a Ç

+ J tlogt a Ç

D'où:
+ loglog £ - log log a

£ 1 log log £ ,,(£)
- + H(6) ~ 7TX r

p =1 (mod k) P (p vv C

tfkj (0

avec

(7) ?k,i —
f ^,i(0,. 1 HO) log log a

—-— H • ——
t cp(k) a (p (k)

Des relations (6) et (7) on déduit que Bk l ne dépend pas de a, mais
seulement de k et /. D'autre part:

'x\ 1

^ nk'l\jJ <p(k)
Ç

1 li[V +
ç

Mais

-s \J
li [~)d[i] m)+ x

r(logx-log0
dt

li (0+ x(loglogx -loglog Ç) -x {t}
t (log X -log 0

dt.

D'où:

(8) S —W 9(k)
110 + ~~77T(loglogx-loglogO

(p(k)

{0
<p(k)J t2(logx -log/)

dt+ E nJ-
1 Vi

{
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La relation (4) s'obtient alors en portant (6) et (8) dans le second membre
de (5), et après avoir tenu compte de:

E
P — s

p=l (mod k)

Z \ ~ Z
P—% P P—Ç

p=l (mod k) p l(modk)

b) Le théorème 2 implique le théorème 1. En effet, pour 1

nous avons

log t 1
0 < —— ^ -logx 2

de sorte que

y/x

{0 dt
t2 (log x— logt) logx J t2

i
^ illf y

t2V,=o v°g*

f»^_i°ïiY'd,=

logx ^

logx

dt — Y —r Cr —
Lo(iogxr+i

-t- 00

— f — Ylogxj 2

Jx

log t\ dtH-

•Jx

l°g X

{t} /log
log X J t2 ylog

dt

7 c.
f=1 (logxy

+
(logx)"

puisqu'il existe une constante Dm (ne dépendant que de m) telle que, pour
0 < r < m — Ion ait:

V X

{t} (logxYx-l(\ogtydt<Dmy-^L
t vx

et que d'autre part

z
log X

Comme, pour tout r ^ 1, nous avons:

o
logx

-((tolö"')' M "«P(-C'(logx)-Ooglogx)«)=o(^),

il en résulte bien que le théorème 2 implique le théorème 1.
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2C—>--j- 00

c) Démonstration du théorème 2. Soit £ £ (x) tel que lim £ —

lim I _j_ QQ Nous avons:

1k,i (0

A*—>-f OO

+ oo

dt O j* iexp(-C(logOVloglogOO^

0 [exp — C (log 0" (log log £)ß) (log O1 a (loglog 0 ]
et

X Ik,I

- —

O £ ^expf-C(log-) (loglogî
J/ V

o

o

exp (-C (log 0*(loglog £)^)log x ß>0

exp - C (log xf (log log xf) log - I x si < 0

D'après la relation (4) on voit donc, en prenant Ç y/x, que le théorème 2

est valable avec toute constante C" telle que C' < 2~a C.

d) Démonstration du théorème 3. Moyennant l'hypothèse (Hk) nous
avons: rjk l (£) O £ log £), et par suite les majorations

-+- <

^d,-o(j t
~ t

et d'autre part

(x

— J—ç

Z o
log ,et<7\lkA0 0(V^log 0 0

log ip^4
p=l (mod k)

£ V
Le terme-erreur est donc d'ordre minimal dès que et log x sont de

log£ V £

même ordre, ce qui est réalisé dès que Ç x' (log x)*. D'où le théorème 3.

3. De la démonstration du théorème 3 on tire facilement le résultat
suivant:
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Corollaire 1. Soit £ (x) une fonction réelle définie sur [1, + oo[, vérifiant

00
1 ^ £ 00 ^ x, et lim -j- t + co. Alors, si l'hypothèse (Hk) est

x~^* + oo X lOg X

vraie, nous avons pour x -> + oo :

(x) 1 xz
Pr'^l.v, (i>J P(k) lOgXj

p I (mod k) x
ÏÔÔ

El*.
t2

En particulier, lorsque £ (x) o (x), nous avons :

M É(*) 1

*>-;«(*) U>j 21ogx q>(k)
p =1 (mod k)

Il nous semble raisonnable de conjecturer que la relation

(Y) Ç(x) 1

P^i(x) IPJ 2 log x <p(k)
p l (mod k)

reste vraie lorsque £ (x) x^ (log x)^
[et même chaque fois que

1
r ,log£(x) log£(x)- < lim mf ^ lim sup < 1

2 *_+«, l°ëx x^+oo log*

Si cette conjecture est vraie, on peut améliorer le théorème 3, en obtenant

un terme-erreur qui est o \yâ (log x)*], et même mieux.

4. Extensions des théorèmes 1 à 3.

a) De même que pour la somme £ cok J(n), la méthode de l'hyperbole
l^n^x

permet d'obtenir des résultats analogues aux théorèmes 1 à 3 (développement

asymptotique et reste intégral) pour la somme £ (u>k,i(ri))h, h entier
1 t^n^x

>2. Signalons seulement le développement asymptotique)7:

Théorème 4. Soit h un entier ^1.7/ existe dans R [X] un polynôme PQ

1

de degré h et de coefficient du terme du plus haut degré et une suite de
cp(k\

7) H. Delange a récemment obtenu un tel résultat, et par une méthode différente et plus générale, pour
toutes les fonctions additives à valeurs entières ^ 0, et valant 1 sur l'ensemble des nombres premiers.
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polynômes Pu P2, ",Pn ••• de degré h — 1 tels que, lorsque x + co, on

ait pour tout m ^ 1 :

V, vm £ Fr(loglogx) f(log log x)"-1"

,1,, K' (B)) " r?o + 0
(log,)—-.

Indiquons le principe de la démonstration, pour simplifier, dans le cas

h — 2. Nous avons:

(9) (cok,i (n))2 («) + 2 Z 1
»

P2/n

où p2 décrit les entiers décomposables en produit de deux facteurs premiers
distincts et / (mod &). Comme on connaît le développement asympto-
tique 8) de ^ 1, la démonstration s'achève par la méthode de l'hyperbole,

P2~X
grâce à la relation (9), de manière analogue au théorème 1.

b) Il est clair que les théorèmes asymptotiques 1 à 4 s'étendent à une

large classe de fonctions fortement additives9): c'est le cas pour toutes les

fonctions totalement additives f (n) pour lesquelles il existe une fonction
réelle 9 (x) « suffisamment dérivable » (par exemple de classe C1) et «

suffisamment régulière» (par exemple 6 (x) xA, A > 0; 0 (x) — (logx)A,
A > 0) telle que f(p) — 9(p) Xk,i(p)> °ù Xk,i est fonction caractéristique
des nombres premiers ~ / (mod k). On peut alors calculer les développements

de Yj )h> h entier 1.

Par exemple, si Sx{ri) est la somme des puissances 2ièmes des diviseurs
premiers de n (2>0), nous pouvons trouver une suite de constantes a1?

a2,ar, ne dépendant que de A et telles que, lorsque x -> + oo, on ait
pour tout entier m ^ 2 :

V c ^ _ ^A + 1) x"+1 £ *A + 1

Z A («) ~"j + Z 7j ^l^n^x A+l logx r=2 (logx)'

III. Sur un théorème de Rényi et Delange

1. Soient co(n)lenombre des diviseurs premiers distincts de l'entier
positif n, et Q (n) le nombre total des facteurs dans la décomposition de n
en facteurs premiers. Autrement dit, si ^ p2a'~pra\ où les pt sont

8) Cf. [11],
9) Une fonction arithmétique additive est dite fortement additive si /(p) - f(p) pour tous p premieret ïyi entier i~z 1 •

(logx)m+1
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des nombres premiers distincts deux à deux et les des entiers > 3, alors
co (n) r et Q (n) al + oc2 + + ar. On a donc Q (n) > co (n), l'égalité
n'ayant lieu que pour les entiers « quadratfrei ».

A. Rényi [5] a montré que, pour tout entier m ^ 0, l'ensemble des

entiers n pour lesquels Q (n) — œ (n) m possède une densité dm (c.à.d.

que, si vm (x) est le nombre des n ^ x tels que Q (n) — co (;n) mx alors

pour x -> + oo on a:

vm (x) dm x +(x)

H. Delange [6] a précisé ce résultat de la façon suivante:

Théorème A. Le fait que la fonction £ (s) de Riemann n 'a aucun zéro de

partie réelle égale à 1 implique que, lorsque x -> + oo ;

vm (x) dmx + o[y/x(loglogx)"1]

Dans un second article, H. Delange [7] a amélioré le résultat précédent
de la façon suivante:

Théorème B. Le fait que la fonction pi (n) de Möbius satisfait à:

Y M») 0[xr^J (a >0)
l^n^x

implique que, lorsque x -> + oo :

K* (loglogx)m~
M dm x + O

logx
Nous nous proposons, dans ce qui suit, d'améliorer ce dernier résultat

de Delange, en donnant un développement asymptotique de la différence

vm (x) — dmx, et même mieux: nous nous sommes en effet aperçu que,
grâce à une astuce simple, on peut transformer l'expression de vm (x) de

façon à le rendre calculable par la méthode de l'hyperbole. Nous
montrerons également, en appendice, comment notre méthode permet de

retrouver de façon simple le résultat de Rényi et le théorème A de Delange.

2. Etude du cas m 1.

En raison de la grande difficulté technique, nous traitons d'abord le

cas m 1, pour traiter ensuite le cas m ^ 2 de façon plus sommaire 10).

10) Le cas m 0 est le cas bien connu des « quadratfrei ». Alors d0 A' et v0 (•*) Q (x) f. x -f
r:2 rr2

+ O [Vx exp (—C (log x)& (log log x)ß], où C > 0 et a > 0. L'hypothèse de Riemann donne un reste bien

meilleur: O
Lx5 ^ £]

pour tout s > 0.
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Théorème 5. Pourtout entier k^2 nous avons, lorsque x — -\- co :

vj (x) dxx +£ Aj +
j—2Oogx)J (log x)k

où la suite des constantes A2, A3, Ak, est définie par :

Aj~l
Aj

Le théorème 5 est une conséquence du résultat plus précis suivant:

</•'"
1 / C(s) \

Théorème 6. tSbzY 7i (t) le nombre de nombres premiers ^ t, et soient
C, a, ß trois constantes (C>0, a>0) telles que, lorsque t + co, on ait :

n (t) li (0 + O [t exp — C (log t)a (log log t)ß)~\

Soit 0 (t) le nombre d'entiers « quadratfrei » ^ t, et ^ezt R (t) ß (t) —

— Art. Alors, lorsque x -> + oo, zmzzs avons :

vl(x) d1 x x
t 2

dt A x

exp [C'(logx)a]

logt
t R(t)

logx — log £

— dt T

+ O x exp — C' (log x)a' (log log x/')
eà C', a7,/?' sezzt des constantes, avec C' > 0 e/ a' > 0 [on peut prendre
a' — a2 et/?' — 2a/?]

En admettant l'hypothèse de Riemann, on peut considérablement
8

améliorer le terme-erreur du théorème 6, le remplaçant par O [x^t
+ \

grâce au:

Théorème 7. Moyennant l'hypothèse de Riemann, nous avons pour
x -> + oo ;

+ 00 ——
2

(x) d1 x x
t - t

logt
dt + x

1 *
2

17

I t R(t)
logx — log t

dt
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-y\
5

xTi
t R (0

logx — log t
dt -{- O

17 / „ logX
x exp K

log log x

où K est une constante absolue > 0.

Démonstration des théorèmes 5 a 7.

a) Calcul préparatoire. Dans toute la suite, la lettre q désignera exclusivement

les entiers « quadratfrei ». Les entiers n tels que Q (n) — co (n) 1

sont ceux dont la décomposition en facteurs premiers comporte un seul

exposant égal à 2, tous les autres exposants étant égaux à 1. Autrement dit,
nous avons Q (n) — co (n) 1 si et seulement si n p2 q, avec p J( q. Par
suite :

Vi (x) X 1= I 1- Z 1= Z 1- Z 1

p/t
P q^kx p q^kx

p I«
pq^x

pXI

I i- I i+ Z 1 Z1- Z i + Z 1

n 3/7

p\q

£ (-1/ £ !•
r -7 nrn. A-

P/«

Il est clair que la dernière expression obtenue est une somme finie,
log x

car nous avons 2, 1 — 0 dès que r > En définitive nous avons :

prq^x lOg 2

(10) Vi 00 z - [y vr 00 avec Vr (x) £ 1.
p,q

Prq^x

b) Démonstration des théorèmes 6 et 7. Puisque Fr(x) est la fonction
sommatoire du produit de convolution de la fonction caractéristique de

l'ensemble des « quadratfrei » par la fonction caractéristique des puissances
rlèmes des nombres premiers, nous pouvons calculer Vr (x) par la méthode
de l'hyperbole. Cependant dans le cas présent, et pour des raisons de
commodité dans la rédaction, nous procéderons d'une manière légèrement
différente. D'après la relation (10), v1 (x) est la fonction sommatoire du

produit de convolution de la fonction caractéristique de l'ensemble des

«quadratfrei» par la fonction arithmétique valant (—l)r si n pr (où
r*z2), et zéro si n n'est pas de cette forme. Posant:
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«*(*)= Z -1)' u (V*) + n* (*) >

Pr^x
r^2

nous obtenons par application de la méthode de l'hyperbole, avec 1 <
< £ < x:

(îi) v, (x)z ô(p)(-1)r+ zxn*$
Pr^2

Nous avons d'abord:

p5« Ö fâ -=S *£< - ])r + P5« * (+) <- !>'
r^2 \P'

6x 1

_ 2 L

71 r^2
+ oo

r^~2 \P

6x

n p P(P +1) K' — + E (-!)'«(+.
t p'^t \P

r^2

En effectuant, de la même manière que dans les démonstrations des théorèmes
+ oo

1 à3, deux intégrations par parties successives sur l'intégrale J t~x dn* (t),
I

nous obtenons:

(12) E 2(E)(_1)- 6ÏZ_J^+ X (_!)-«(>)_
\P J n p p(p +1) p'^ç \P J

r^2 r^2

6x
IT2

+ oo _
3

t
dt +

6x rj* (£) 6x f rj* (t)-logt 7I2 £ 712 J t2
5

dt

De la même manière nous obtenons, avec a quelconque tel que 0 < a < 1 :

.X

(13) E «*()) E fli( /î) ^.!M> +
«< * V4

+ii(M?) + z+©+6xrr5
«< 4 4

Ö o

6x f t~2
~~2 dt + J*
rc2Jlogf v

5 1
r f'2jR(o
logx - logt

dt
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Il résulte de la relation (13) que la somme des deux derniers termes du
dernier membre de (13) ne dépend pas de a (0<ö<1): par conséquent la
relation (13) reste vraie avec a 1.

Enfin, il est clair que:

(M) -«««)e(î) _W 71-2 Ç n2 Ç

D'après (11), nous obtenons par addition des relations (12), (13) [avec a=
1] et (14):

x
+ co 3 ^ 3

6x 1 6x f t~ï r t~2R(t)
(15) Vj (x) —2 X ^ 2 i—: —dt -

71 pp(p +1) 7i J log t J log x— logt
* 1

Z r >2 H

De la même manière que nous avons obtenu le théorème 2 à partir
de la relation (4), nous obtenons le théorème 6 à partir de la relation (15)

en prenant, avec une constante convenable C > 0:

£ x exp [-C'(logx)a]
et en remarquant que la formule:

n (t) li (0 + O [t exp - C (log 0a (log log t)ß)~]

a pour conséquence les relations:

rj* (0 O [V*~exp - C" (log tf (loglog t)ß)]

et
R (t) O [^sjïexp — C'" (log tf (loglog t)ß)]

où C" et C'" sont des constantes convenables > 0.

L'hypothèse de Riemann, qui est équivalente à la relation rj* (t)
li {^/t) + O (r log t) implique en outre n):

r 2

R(t) O
log x

t5 exp Kf
V log log XJ

K1 constante > 0.

11) Cf. [16].
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Dans ce cas, un calcul élémentaire fait d'après la relation (15) montre que
12

le meilleur choix de £ est Ç x17, et le théorème 7 découle alors des

relations (10) et (15) et des estimations de rj (t) et de R (t).

c) Démonstration du théorème 5. Le théorème 5 s'obtient à partir du

théorème 6 de la même manière que nous avons obtenu le théorème 1 à

partir du théorème 2. En effet, on peut développer suivant les puissances de

les deuxième et troisième termes du second membre de la relation
log x
donnant v1 (x) [dans l'énoncé du théorème 6], et nous obtenons immédiatement,

pour tout k ^ 1 :

î î

*2
Vj (x) =ii,-X+ £ n.fi (îogxy

; + O
x2

(log xf
avec:

(16) Aj +
71 f 2 (logt)7'"1 R(t)dt

Nous pouvons dès à présent remarquer que A1 0, Â2 ^ 0. En effet
nous avons (cf. [7]):

("„(')~ -1 s (I) (séïyr
x2 (log log x)"

(logx)2

11 en résulte ici:

0 et A2 4 C

Nous allons donner, pour les Ap une expression plus simple 12) que
celle de la relation (16):

Pour s complexe, ^e (s) > 1, nous avons:

Of) y° |M«)[
C (2s) n=1 ns

•d Q (0
S

+ 00

*<2(0
dt

Jr*} août *^68, nous avi°ns démontré le développement asymptotique [les Ai étant donnés par larelation (16)] et fait le calcul effectif de A\ et de A%. M. H. Delange a bien voulu nous indiquer que les A idonnes par la relation (16) prenaient en fait la forme plus simple de la relation (17).
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donc, pour (s) > 1 :

+ÇR(t) ^C(s)6 1

—— at — —
t s C (2s) 71 s — 1

i

L'intégrale étant absolument convergente pour 01q (s) ^ l'égalité ci-dessus

a lieu pour 01e (s) ^ On voit ainsi que :

+ oo

t~\ (log ty R(t)dt— l)r E(r)

1

avec

Fn_ C(s) 1

(5)
S C (2s) 7t2 s - 1

En définitive:

• dj~l C(s) \
(17)

Ainsi

2 0 et A2 — lim — 4 £ (f)
C(l) 5^^(s-^)SC(2S)

3. Etude du cas m ^ 2.

Au prix de difficultés techniques énormes, notre méthode permet de

trouver, pour la différence vm (,x) — dm x, un développement asympto-
tique (analogue au théorème 5), ainsi que des formes plus précises
(analogues aux théorèmes 6 et 7). Signalons seulement le développement asym-
ptotique 13):

Théorème 8. Il existe dans R [X] une suite de polynômes P2,P3,
de degré m — 1, tels que, pour tout entier k ^ 2 on ait lorsque x -> + oo :

f v Pj(loE^ogx) ~vm(x) dmx + L — y— + o
3 2 (log

(log log x)"

(logx)*+3
13) Pour plus de détails sur ce développement asymptotique, cf. [10].
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Indiquons le principe de la démonstration: il s'agit d établir, dans le

cas général m ^ 1, des résultats analogues à la relation (10). Posons, pour

tous entiers r1 ^ 2, r2 §; 1 :

Vrur2 (x) Z 1

p'r2 q^x
P^P'

Posons de même, pour tous entiers i\ ^ 2, r2 ^ 2, r3 ^ 2:

^1/2/3 (*) S 1

pri P'r2 p 'r3
P^ézP' ^zP"^P

Les seuls entiers n tels que £2 («) — co (/?) 2 sont ceux de la forme n

p3 q, p X q> ou bien n p2 p'2 q, p A p\ p X q9 V X q-

Les seuls entiers n tels que Q (n) — co (n) 3 sont ceux de la forme n

p* q, p X q> ou bien n p3 p'2 q, p A p', P X P X ou bien n

p2 p'2 p"2 qt p # p' # p" a p, p x q> p' X q> p" X q-

On obtient alors, par la même méthode qui a servi à démontrer la relation

(10):

v2(*) z (-ir1 vr(x) + z (-i)ri+r2 vntn(x)9
r ^ 3 r1^2, rg ^ 2

v3(x) Z (-17KW + Z (~l)ri+r2+I K1<ri(x) +
r ^ 4 /"l ^ 3, r9 ^ 2

+ Z (-l)ri + r2 + r3Fri,r2,r3(x);
ir 2. r-2 2. r3 2

et des formules analogues dans le cas m ^ 4.

Puisqu'on connaît la répartition asymptotique des entiers dont le nombre
de facteurs premiers est donné (cf. [11]), il en résulte que chacune des quantités

Vr(x), VrifJ.2(x)9 Ki,n,n(*) est calculable par la méthode de l'hyperbole,

et le calcul se poursuit exactement comme dans la démonstration des

théorèmes 5 à 7.

4. Remarques.

a) Notre méthode s'applique à des fonctions arithmétiques plus générales

que Q (n) — co (n) : soit f(n) une fonction arithmétique additive et

« prime-independant », c'est-à-dire que si p et p sont premiers et a est

entier ^ 0, alors f(pa) f(p,a). Supposons de plus que la fonction f(pa)
[de la variable a] soit non-décroissante, à valeurs entières ^ 0, et s'annule

pour a =5 1. Alors nous pourrons donner, pour le nombre vm (x) des entiers
n fLx tels que f(n) m un développement asymptotique analogue à celui
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du théorème 8, la différence vr (x) — drx étant ainsi équivalente au produit

d'une constante par xr + 1 (log x) 2, où r est le plus grand entier a tel

que f(pa) 0.

b) La démonstration du développement asymptotique mentionné ci-
dessus, et a fortiori ceux des théorèmes 5 et 8 (et, pareillement, ceux des

théorèmes 1 et 4), peut se faire en n'utilisant le théorème des nombres

premiers que sous sa forme asymptotique, c'est-à-dire:

La méthode de l'hyperbole, parce qu'elle est élémentaire, a une efficacité

limitée (la rédaction complète de la démonstration du théorème 8,

faisable pour m 2, devient horrible pour m ^ 3).

H. Delange, par des méthodes analytiques, retrouve tous les résultats

contenus dans cet article de façon plus rapide et plus générale, et va beaucoup

plus loin. Trois articles à ce sujet [8], [9] et [10] sont à paraître en 1970

dans Acta Arithmetica.

Nous montrons ici comment on peut retrouver, de façon élémentaire,
le résultat de Renyi (et même un peu mieux) et le théorème A de Delange.

Théorème. Notons toujours par vm (x) le nombre des n ^ x tels que
Q (ri) — cd (n) m. Alors :

a) Sans utiliser aucune estimation de n (x) [autre que l 'estimation banale

n (x) O (x)], nous avons :

V,„ (x) dmx+logx).

IV. Méthode analytique

Appendice

b) L 'estimation de Tchebicheff n (x) O implique :

vm(x) dmx + 0(7* (log log
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c) Le théorème des nombres premiers n (x) implique :
logx_

vm(x) dmx+ o[\J~x(loglogx)m~*).
Démonstration :

a) Reprenons les expressions Vr(x), Vnn (x), Vri r2 n (x),... définies

précédemment. Compte tenu de la relation Q (x) 2L x + O G/x) [dont la

démonstration ne fait appel à aucune estimation de n (x)], nous avons:

Vn,r2, .„(x) =Lx^p-(n + r2 + + rk) r2) + £ 771
p \l>jx J \ i^y/xL

constante x + O (yjx log x).

En utilisant alors la relation (10) et ses analogues [rencontrés au cours de

la démonstration du théorème 8], on obtient par addition

vm(x) dmx +(V* log x).

b) L'estimation de Tchebicheff n (x) Ol 1 implique:
Vlog XJ

£ l (Ioglogx)4"1
1 < i<* V'°sx

CO (0 < k

Nous obtenons donc cette fois:

vn,n,...,rkO) constante x + O[x £ l~2[ + £ i]
l > Vx l ^ V3c

CO (l) ^ k CD (l) ^ k

constante x + O [^/x^oglogx/]
En utilisant alors la relation (10) et ses analogues, on obtient donc:

v„,(x) dmx +O(y/x(loglog x)m).

X
c) Le théorème des nombres premiers n (x)

log x
implique :

£ 1 ~ £ î~77 77". ' (log log x)'' 1

1<ï<* (/C — 1) lOgX
co (l)< k Q (l) k

La relation vm(x) dm x -\- o (^/x (log log x)m (s'obtient alors de
façon analogue à b), en remarquant que cette fois: (x) + (x/x).
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