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Ce théorème est tout à fait analogue au théorème (2.3), à ceci près

qu'il ne nous donne pas d'ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient l'entier positif m et l'anneau-d'entiers

algébriques A, on a l'inégalité

v(m;A) ^ 2m + 8m5.

Le théorème (3.3) généralise l'inégalité

v (m; A) g 2m_1 + (m— l)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas où l'exposant m est premier ;

l'ordre de grandeur est seulement un peu moins bon: 2m au lieu de 2m_1

(ceci tient au fait qu'on est obligé, dans le cas général, d'envisager les

valeurs paires de m).

4. Démonstration du théorème (3.3).

Lemme (4.1). Soient A un anneau, m un entier positif, et B un anneau
quotient de A. On a alors l'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient A1, A2, Ar des anneaux en nombre fini, et soit B
leur produit. On a alors l'inégalité

w(m; B) < sup w(m; At).
i </<r

La démonstration de ces deux lemmes est immédiate; signalons seulement

que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur l'exemple suivant: r 2, m 2, et Ax A2 R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A ayant la propriété suivante :

tout élément de a est de la forme

(4) ± ± à ± ± ams (au a2, ase A);

on a alors l'inégalité

v (m; A) <; + v (m; A/a).
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Il suffit pour le voir d'appliquer la définition de v(m; A).

Lemme (4.4). Soient A un anneau d'entiers algébriques, m et n deux
entiers positifs et p un idéal premier non nul de A. on a alors l'inégalité

w (m; A/pn) S 8ra5.

Prouvons ce lemme: p étant en fait un idéal maximal de A, on a un
isomorphisme canonique

A/y"— AplynAp

(voir [4], chap. II, § 3, n° 3, prop. 9); mais on a également un isomorphisme
canonique

AplynAp cz Ap

(voir [4], chap. III, § 2, n° 12, formules (21), et n° 13, prop. 19). A/pn est
A

donc isomorphe à un quotient de Ap, d'où, en appliquant le lemme (4.1),

A
w (m ; A/yn) ^ w (m ; Ap) ;

A
le lemme (4.4) résulte alors du théorème (2.3), et du fait que Ap est un
anneau ^3-adique.

*

Venons-en alors à la démonstration du théorème (3.3). Soient A un
anneau d'entiers algébriques et m un entier positif; l'identité bien connue
(voir par exemple [5], th. 402)

m— \

(5) m\aX (V)(-l )m-l-h((

s 2 X (V) 2.2ra_1 2m ;

montre que tout élément de l'idéal a mlA est de la forme (4) (voir lemme

(4.3)) avec
m— 1

: Ih o

le lemme (4.3) donne donc l'inégalité

v (m; A) ^ 2m + v (m; A/a).

D'autre part, dans A/a, qui est un anneau fini, — 1 est somme de puissances
miemes, d'où évidemment l'inégalité

v (m; A/a) ^ w (m; A/a).
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Il suffit donc en fait de prouver l'inégalité

(6) w(m; A/a) ^ 8m5;

or, dans A, qui est un anneau de Dedekind, l'idéal a se décompose en

facteurs premiers:

a Pi"iP2n2 P/V

(les P; premiers non nuls et deux à deux distincts, les ^>0), et le « théorème

chinois » (voir par exemple [4], chap. II, § 1, n° 2, prop. 5) donne un iso-

morphisme canonique

A/a ^ (A/vSî) x CA/y2 2) x x 04/p/V);

l'inégalité (6) résulte alors immédiatement des lemmes (4.2) et (4.4). Et le

théorème (3.3) se trouve démontré.

*

Deux remarques pour terminer:

a) Tout d'abord, si l'exposant m est impair, on peut, au lieu de (5), utiliser
l'identité

m l (a + (m-l)/2)(V)(-l
m — 1

qui n'en est d'ailleurs qu'une écriture différente; la démonstration ci-dessus

mène alors à la majoration plus précise

v(m;A) < 2m_ 1 + 8m5.

b) Si maintenant l'exposant m est premier impair, l'inégalité (6) peut être

remplacée par celle-ci:

(8) w (m; A/a) < 2m— 1 ;

il suffit pour le voir d'appliquer le résultat signalé dans les dernières lignes
du paragraphe2. Remplaçant dans la démonstration ci-dessus l'identité (5)

par l'identité (7) et la majoration (6) par la majoration (8), on obtient alors

l'inégalité
v(m;A) ^ 2m~1 +2m-l,

toujours pour un anneau d'entiers algébriques A, bien entendu.
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