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Ce théoréme est tout a fait analogue au théoréme (2.3), a ceci prés
qu’il ne nous donne pas d’ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient I’entier positif m et 1’anneau. -d’entiers
algébriques 4, on a l'inégalité
v(m; A) < 2™ 4+ 8m°.
Le théoréme (3.3) généralise I'inégalité
v(m; A) £2" 1+ (m—1)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas ou 'exposant m est premier;
I'ordre de grandeur est seulement un peu moins bon: 2™ au lieu de 2"~ !
(ceci tient au fait qu'on est obligé, dans le cas général, d’envisager les
valeurs paires de m).

4. DEMONSTRATION DU THEOREME (3.3).

Lemme (4.1). Solent 4 un anneau, m un entier positif. et B un anneau
quotient de 4. On a alors I'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient 4y, A,, ..., A, des anneaux en nombre fini, et soit B
leur produit. On a alors 'inégalité

w(m; B) < sup w(m; 4,).
1igr

La démonstration de ces deux lemmes est immédiate; signalons seule-
ment que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur I'exemple suivant: r =2, m = 2, et 4; = 4, = R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A4 ayant la propriété suivante:

tout élément de a est de la forme
4) t+af +d% + ... +ad7 (ay, ay, ..., a,€ A);

on a alors I'inégalité

v(m; A) < s+ v(m; A)a).
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11 suffit pour le voir d’appliquer la définition de v(m; A).

Lemme (4.4). Soient A un anneau d’entiers algébrigques, m et n deux
entiers positifs et p un idéal premier non nul de 4. on a alors I'inégalité

w (m; Afp") < 8m°.

Prouvons ce lemme: p étant en fait un idéal maximal de A, on a un
1somorphisme canonique

Afp" ~ A,[p"4,

(voir [4], chap. 11, § 3, n° 3, prop. 9); mais on a également un isomorphisme‘
canonique

A", ~ A, [p" 4,
(voir [4], chap. III, § 2, n° 12, formules (21), et n° 13, prop. 19). 4/p" est
donc isomorphe a4 un quotient de 4,, d’ou, en appliquant le lemme (4.1),
w(m; Afp") = w(m; Ap);

A

le lemme (4.4) résulte alors du théoréme (2.3), et du fait que A, est un

anneau P-adique.
&

Venons-en alors a la démonstration du théoréme (3.3). Soient 4 un
anneau d’entiers algébriques et m un entier positif; I’identité bien connue
(voir par exemple [5], th. 402)

m—1
(5) mla =y (" )(=D"""(a+h"~hmm)
h=o
montre que tout élément de 1'idéal a = m!4 est de la forme (4) (voir lemme

(4.3)) avec
m—1
s =2y (") =22""" = 2™
h=o

le lemme (4.3) donne donc I'inégalité
v(im; A) < 2™+ v(m; Ala).

D’autre part, dans 4/a, qui est un anneau fini, —1 est somme de puissances
m'mes d’ou évidemment I'inégalité

v(m; Ala) = w(m; Ala).
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Il suffit donc en fait de prouver l'inégalité
(6)  w(m; Afa) £ 8m®;
or, dans A4, qui est un anneau de Dedekind, I'idéal a se décompose en
facteurs premiers:
a =P 1P"2... pr

(les p, premiers non nuls et deux & deux distincts, les n;>0), et le « théoréme
chinois » (voir par exemple [4], chap. II, § 1, n° 2, prop. 5) donne un iso-
morphisme canonique -

Ala = (A/p4"1) X (4/p;"2) X ... X (4/p,"r);

Iinégalité (6) résulte alors immédiatement des lemmes (4.2) et (4.4). Et le
théoréme (3.3) se trouve démontre.

Deux remarques pour terminer:
a) Tout d’abord, si ’exposant m est impair, on peut, au lieu de (5), utiliser
I’identité

m!(a+ (m—1)2) = 2_201 (" (=D" " @+ Ry,

qui n’en est d’ailleurs qu’une écriture différente; la démonstration ci-dessus
méne alors a la majoration plus précise

v(m; A) <21 4 8m°.

b) Si maintenant I’exposant m est premier impair, I'inégalité (6) peut €tre
remplacée par celle-ci:

®) w (m; Ala) < 2m—1;

il suffit pour le voir d’appliquer le résultat signalé dans les derniéres lignes
du paragraphe2. Remplagant dans la démonstration ci-dessus 'identité (5)
par I’identité (7) et la majoration (6) par la majoration (8), on obtient alors
Pinégalité

v(m; A) £ 2™ 1 4+ 2m—1,

toujours pour un anneau d’entiers algébriques A4, bien entendu.
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