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ristiques à corps résiduel fini), et soient k le corps résiduel de A, q pf
le nombre d'éléments de k et e l'indice de ramification absolu de A.

Théorème (2.2) (voir [8], th. (2.19)). Les deux assertions suivantes sont

équivalentes :

(a) A Am;

(b) k km, et de plus, si p divise m, A est absolument non-ramifié.

Compte tenu du lemme (2.1), l'égalité A — Am équivaut donc à la
condition « numérique » ci-dessous :

(c) [q ; m] q, et de plus, si p divise m, e 1.

Ajoutons deux choses: tout d'abord, dans un anneau ^3-adique, —1 est

toujours somme de puissances mlemes (voir par exemple [8], th. (6.19)):
l'égalité A Am implique donc en fait que tout élément de A est somme de

puissances mlemes; par ailleurs, même lorsque A A Am, Am est un anneau
local, séparé, complet, de dimension 1 (mais non intégralement clos), et
A est un ^4m-rnodule de type fini (voir [8], prop. (3.14)).

*

Théorème (2.3) (voir [9], prop. 3). On a la majoration suivante,
indépendante de l'anneau (^3-adique) A :

w (m; A) ^ 8m5.

Signalons que Birch a donné, par une méthode complètement différente,
la majoration (également indépendante de A) w (m; A) ^ m16m2; par
ailleurs, nous avons prouvé nous-même que si m est premier impair, on
a la majoration plus précise w (m; A) ^ 2m—1 (voir respectivement [3],
th. 1, et [8], th. (7.34)).

3. Sommes de puissances mlemes dans un anneau d'entiers algébriques

Soient maintenant A un anneau d'entiers algébriques, K le corps des
fractions de A, et d le discriminant de K; pour tout idéal premier non nul
p de A, convenons de désigner par cp la caractéristique de A/p Ap/pAp,
par ep et fp l'indice de ramification absolu et le degré résiduel absolu de
Ap, et par Np le nombre d'éléments de Ajp Ap/pAp; on a donc
Np c/p.
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Théorème (3.1) (voir [2], th. 1, d'une part, et [6], th. 5 ou [8], th. (4.11),
d'autre part). Les deux assertions suivantes sont équivalentes:

(a) A Am;

(b) Pour tout idéal premier non nul p de d, on a d/p (A/p)m, et
de plus, si cp divise m, on a ep 1.

Notons que, compte tenu du lemme (2.1) et du lien entre discriminant
et ramification, l'égalité A Am équivaut ici encore à une condition
« numérique » :

(c) Pour tout idéal premier non nul p de A, on a l'égalité [Ap; m] Ap,
et de plus, m est étranger au discriminant d.

(La condition [Ap ; m] Ap est d'ailleurs automatiquement vérifiée dès

que cp> m; il n'y a donc en fait qu'un nombre fini de vérifications numériques

à effectuer pour voir si un couple (A, m) satisfait à la condition (c)).
Le théorème (3.1) a été démontré pour la première fois par Siegel

pour m 2 (voir [10], th. V) et par Bateman et Stemmler pour m premier
quelconque (voir [1], th. 3). En ce qui concerne le cas général, la démonstration

donnée dans [2] par Bhaskaran est de type arithmétique en ce sens

qu'elle s'appuie sur des calculs de congruences modulo des puissances
d'idéaux premiers; elle utilise d'ailleurs certains des résultats obtenus par
Bateman et Stemmler dans [1] et [11]; la démonstration du théorème (3.1)

que nous donnons nous-même dans [6] est au contraire de type algébrique :

elle consiste à noter que A Am si et seulement si Ap (Ap)m pour tout idéal
A A

premier p non nul de A, puis que Ap (^4p)m si et seulement si Ap (Ap)m;
A

comme Ap est un anneau ^3-adique, il suffit alors d'utiliser le théorème (2.2).
Naturellement, les deux démonstrations sont essentiellement équivalentes;

remarquons simplement que les techniques de l'Algèbre Commutative
(localisation, complétion, sont particulièrement bien adaptées au type
de problème envisagé ici ; nous aurons d'ailleurs une nouvelle occasion de

le constater au paragraphe suivant.

*

Théorème (3.2) (voir [2], th. 1). Pour tout entier positif m, il existe un
entier b (m) tel qu'on ait la majoration

v (m ; A) ^ b {m)

pour tout anneau d'entiers algébriques A.
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Ce théorème est tout à fait analogue au théorème (2.3), à ceci près

qu'il ne nous donne pas d'ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient l'entier positif m et l'anneau-d'entiers

algébriques A, on a l'inégalité

v(m;A) ^ 2m + 8m5.

Le théorème (3.3) généralise l'inégalité

v (m; A) g 2m_1 + (m— l)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas où l'exposant m est premier ;

l'ordre de grandeur est seulement un peu moins bon: 2m au lieu de 2m_1

(ceci tient au fait qu'on est obligé, dans le cas général, d'envisager les

valeurs paires de m).

4. Démonstration du théorème (3.3).

Lemme (4.1). Soient A un anneau, m un entier positif, et B un anneau
quotient de A. On a alors l'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient A1, A2, Ar des anneaux en nombre fini, et soit B
leur produit. On a alors l'inégalité

w(m; B) < sup w(m; At).
i </<r

La démonstration de ces deux lemmes est immédiate; signalons seulement

que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur l'exemple suivant: r 2, m 2, et Ax A2 R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A ayant la propriété suivante :

tout élément de a est de la forme

(4) ± ± à ± ± ams (au a2, ase A);

on a alors l'inégalité

v (m; A) <; + v (m; A/a).
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