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ristiques & corps résiduel fini), et soient k le corps résiduel de 4, g = 24

le nombre d’éléments de k et e I'indice de ramification absolu de 4.

Théoréme (2.2) (voir [8], th. (2.19)). Les deux assertions suivantes sont
¢quivalentes:

(a) 4 = 4,;
(b) k = k,, et de plus, si p divise m, A est absolument non-ramifi€.

Compte tenu du lemme (2.1), I’égalité 4 = 4,, équivaut donc a la
condition « numérique » ci-dessous:

(c) [g; m] = gq, et de plus, si p divise m, e = 1.

Ajoutons deux choses: tout d’abord, dans un anneau ‘f-adique, —1 est
toujours somme de puissances m'“™® (voir par exemple [8], th. (6.19)):
I’égalité 4 = A,, implique donc en fait que tout élément de A est somme de
puissances m™™eS; par ailleurs, méme lorsque A4 # A,, A, est un anneau
local, séparé, complet, de dimension 1 (mais non intégralement clos), et
A est un A4,-module de type fini (voir [8], prop. (3.14)).

Théoreme (2.3) (voir [9], prop. 3). On a la majoration suivante, indé-
pendante de ’anneau (B-adique) A4:

w (m; A) < 8m°.

Signalons que Birch a donné, par une méthode complétement différente,
la majoration (également indépendante de A) w (m; 4) £ m*°"%; par
ailleurs, nous avons prouvé nous-méme que si m est premier impair, on
a la majoration plus précise w (m; A) < 2m—1 (voir respectivement [3],

th. 1, et [8], th. (7.34)).

3. SOMMES DE PUISSANCES #1'®"°° DANS UN ANNEAU D’ENTIERS ALGEBRIQUES

Soient maintenant 4 un anneau d’entiers algébriques, K le corps des
fractions de 4, et d le discriminant de K; pour tout idéal premier non nul
p de A4, convenons de désigner par ¢, la caractéristique de A/p = A,[pA,,
par e, et f, I'indice de ramification absolu et le degré résiduel absolu de
A, et par Np le nombre d’éléments de A/p = A,/pA,; on a donc
Np = ¢,’p.
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Théoréme (3.1) (voir [2], th. 1, d’une part, et [6], th. 5 ou [8], th. (4.11),
d’autre part). Les deux assertions suivantes sont équivalentes:

(@) 4 = A4,;
(b) Pour tout idéal premier non nul p de 4, on a A/p = (4/p),, et
de plus, si c, divise m, ona e, = 1.

Notons que, compte tenu du lemme (2.1) et du lien entre discriminant
et ramification, I’égalité 4 = A4,, équivaut ici encore a4 une condition
« numérique »:

(c) Pour tout idéal premier non nul p de 4, on a 1’égalité [Np; m] = Np,
et de plus, m est étranger au discriminant d.

(La condition [Np;m] = Np est d’ailleurs automatiquement vérifiée dés
que ¢,> m; il n’y a donc en fait qu’un nombre fini de vérifications numé-
riques a effectuer pour voir si un couple (4, m) satisfait a la condition (c)).

Le théoréme (3.1) a été démontré pour la premiére fois par Siegel
pour m = 2 (voir [10], th. V) et par Bateman et Stemmler pour m premier
quelconque (voir [1], th. 3). En ce qui concerne le cas général, la démons-
tration donnée dans [2] par Bhaskaran est de type arithmétique en ce sens
qu’elle s’appuie sur des calculs de congruences modulo des puissances
d’idéaux premiers; elle utilise d’ailleurs certains des résultats obtenus par
Bateman et Stemmler dans [1} et [11]; la démonstration du théoréme (3.1)
que nous donnons nous-méme dans [6] est au contraire de type algébrique:
elle consiste & noter que 4 = A,, si et seulement si A » = (4,), pour toutidéal

A

premier p non nul de 4, puis que 4, = (4,),,si et seulement si 4, = (4,),,;

comme A, est un anneau *$-adique, il suffit alors d’utiliser le théoréme (2.2).
Naturellement, les deux démonstrations sont essentiellement équivalentes;
remarquons simplement que les techniques de I’Algébre Commutative
(localisation, complétion, ...) sont particuliérement bien adaptées au type
de probléme envisagé ici; nous aurons d’ailleurs une nouvelle occasion de
le constater au paragraphe suivant.

Théoréeme (3.2) (voir [2], th. 1). Pour tout entier positif m, il existe un
entier b (m) tel qu’on ait la majoration

v(m; ) < b (m)

pour tout anneau d’entiers algébriques A4.
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Ce théoréme est tout a fait analogue au théoréme (2.3), a ceci prés
qu’il ne nous donne pas d’ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient I’entier positif m et 1’anneau. -d’entiers
algébriques 4, on a l'inégalité
v(m; A) < 2™ 4+ 8m°.
Le théoréme (3.3) généralise I'inégalité
v(m; A) £2" 1+ (m—1)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas ou 'exposant m est premier;
I'ordre de grandeur est seulement un peu moins bon: 2™ au lieu de 2"~ !
(ceci tient au fait qu'on est obligé, dans le cas général, d’envisager les
valeurs paires de m).

4. DEMONSTRATION DU THEOREME (3.3).

Lemme (4.1). Solent 4 un anneau, m un entier positif. et B un anneau
quotient de 4. On a alors I'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient 4y, A,, ..., A, des anneaux en nombre fini, et soit B
leur produit. On a alors 'inégalité

w(m; B) < sup w(m; 4,).
1igr

La démonstration de ces deux lemmes est immédiate; signalons seule-
ment que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur I'exemple suivant: r =2, m = 2, et 4; = 4, = R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A4 ayant la propriété suivante:

tout élément de a est de la forme
4) t+af +d% + ... +ad7 (ay, ay, ..., a,€ A);

on a alors I'inégalité

v(m; A) < s+ v(m; A)a).
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