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SOMMES DE PUISSANCES miemes

DANS LES ANNEAUX ^-ADÏQUES
ET LES ANNEAUX D'ENTIERS ALGÉBRIQUES

Jean-René Joly

1. Introduction

Pour tout anneau commutatif et unitaire A et tout entier positif m,

nous désignerons par A* l'ensemble des éléments de A de la forme

a + a2m + + asm

(s positif quelconque, al9 a2, ßseX), et par Am l'ensemble des éléments

de A de la forme

± axm ± a2m ± ± asm

(avec également s positif quelconque et al9 a2, aseA); il est clair que Am

est le sous-anneau de A engendré par les puissances miemes des éléments de A.

Nous désignerons d'autre part par w(m; A) le plus petit entier s tel que tout
élément de A* puisse se mettre sous la forme (1), et par v (m; A) le plus petit
entier s tel que tout élément de Am puisse se mettre sous la forme (2) (bien

entendu, il n'est pas exclu a priori que w (m; A) ou v (m; A) soit infini; voir

par exemple dans [8], th. (7.30), la construction d'un corps L tel que w(m; L)
soit infini pour tout exposant pair m).

L'étude par des méthodes purement algébriques des constantes

w (m; A) et v (m ; A), et la recherche de conditions permettant d'affirmer

que A Am, ont été entreprises notamment par Birch, Ramanujam et

nous-même (voir respectivement [3], [9], [7]) dans le cas où A est un anneau

ty-adique, et par Siegel, Bateman, Stemmler, Bhaskaran et nous-même dans
le cas où A est un anneau d'entiers algébriques (voir respectivement [10], [1],
[11], [2], [6]). Naturellement, l'étude de w (m; A) lorsque A est un anneau
d'entiers algébriques (ou un corps de nombres algébriques) est étroitement
apparentée au problème de Waring, qui a fait depuis une cinquantaine
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d'années l'objet de travaux fort nombreux; mais ces travaux reposent
presque exclusivement sur l'application de techniques analytiques (en fait,
diverses généralisations et améliorations des méthodes de Hardy et

Littlewood) et, faute de compétence suffisante en ce domaine, nous nous
abstiendrons de les envisager ici.

En fait, le but de ce court article est de résumer les résultats actuellement

connus (connus de l'auteur, bien entendu) relatifs à w (m; A), v (m; A) et

Am dans le cas où A est un anneau ^3-adique (paragraphe 2) et dans le cas

où A est un anneau d'entiers algébriques (paragraphe 3), puis de les

compléter en donnant de v(m; A) une majoration explicite et indépendante
de A, toujours dans le cas où A est un anneau d'entiers algébriques (théorème

(3.3), démontré au paragraphe 4); ce dernier résultat est une
conséquence presque immédiate d'un résultat de Ramanujam (th. (2.3)) dont la

démonstration, donnée dans [9], est d'ailleurs longue et délicate.

2. Sommes de puissances miemes dans un anneau ^3-adique

Pour des raisons de commodité, adoptons une notation: si p est un
nombre premier, si q — pf (/ ^ 1) est un nombre ^-primaire et si m est

un entier positif quelconque, nous désignerons par le symbole [q ; m] le plus

petit nombre /^-primaire p9 ayant les deux propriétés suivantes:

l'exposant g divise l'exposant /;
le quotient (pf— 1 )/(p9— 1) divise l'entier m.

On a alors ce résultat élémentaire (pour une démonstration, voir

par exemple [8], th. 2.3)):

Lemme (2.1). Soit k le corps fini à q pf éléments. Si m est un
entier positif, km est égal au sous-corps de k contenant exactement

[q ; m] éléments :

w] *

Ces préliminaires étant posés, désignons par A un anneau ^3-adique

(c'est-à-dire un anneau de valuation discrète complet d'inégales caracté-
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ristiques à corps résiduel fini), et soient k le corps résiduel de A, q pf
le nombre d'éléments de k et e l'indice de ramification absolu de A.

Théorème (2.2) (voir [8], th. (2.19)). Les deux assertions suivantes sont

équivalentes :

(a) A Am;

(b) k km, et de plus, si p divise m, A est absolument non-ramifié.

Compte tenu du lemme (2.1), l'égalité A — Am équivaut donc à la
condition « numérique » ci-dessous :

(c) [q ; m] q, et de plus, si p divise m, e 1.

Ajoutons deux choses: tout d'abord, dans un anneau ^3-adique, —1 est

toujours somme de puissances mlemes (voir par exemple [8], th. (6.19)):
l'égalité A Am implique donc en fait que tout élément de A est somme de

puissances mlemes; par ailleurs, même lorsque A A Am, Am est un anneau
local, séparé, complet, de dimension 1 (mais non intégralement clos), et
A est un ^4m-rnodule de type fini (voir [8], prop. (3.14)).

*

Théorème (2.3) (voir [9], prop. 3). On a la majoration suivante,
indépendante de l'anneau (^3-adique) A :

w (m; A) ^ 8m5.

Signalons que Birch a donné, par une méthode complètement différente,
la majoration (également indépendante de A) w (m; A) ^ m16m2; par
ailleurs, nous avons prouvé nous-même que si m est premier impair, on
a la majoration plus précise w (m; A) ^ 2m—1 (voir respectivement [3],
th. 1, et [8], th. (7.34)).

3. Sommes de puissances mlemes dans un anneau d'entiers algébriques

Soient maintenant A un anneau d'entiers algébriques, K le corps des
fractions de A, et d le discriminant de K; pour tout idéal premier non nul
p de A, convenons de désigner par cp la caractéristique de A/p Ap/pAp,
par ep et fp l'indice de ramification absolu et le degré résiduel absolu de
Ap, et par Np le nombre d'éléments de Ajp Ap/pAp; on a donc
Np c/p.
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Théorème (3.1) (voir [2], th. 1, d'une part, et [6], th. 5 ou [8], th. (4.11),
d'autre part). Les deux assertions suivantes sont équivalentes:

(a) A Am;

(b) Pour tout idéal premier non nul p de d, on a d/p (A/p)m, et
de plus, si cp divise m, on a ep 1.

Notons que, compte tenu du lemme (2.1) et du lien entre discriminant
et ramification, l'égalité A Am équivaut ici encore à une condition
« numérique » :

(c) Pour tout idéal premier non nul p de A, on a l'égalité [Ap; m] Ap,
et de plus, m est étranger au discriminant d.

(La condition [Ap ; m] Ap est d'ailleurs automatiquement vérifiée dès

que cp> m; il n'y a donc en fait qu'un nombre fini de vérifications numériques

à effectuer pour voir si un couple (A, m) satisfait à la condition (c)).
Le théorème (3.1) a été démontré pour la première fois par Siegel

pour m 2 (voir [10], th. V) et par Bateman et Stemmler pour m premier
quelconque (voir [1], th. 3). En ce qui concerne le cas général, la démonstration

donnée dans [2] par Bhaskaran est de type arithmétique en ce sens

qu'elle s'appuie sur des calculs de congruences modulo des puissances
d'idéaux premiers; elle utilise d'ailleurs certains des résultats obtenus par
Bateman et Stemmler dans [1] et [11]; la démonstration du théorème (3.1)

que nous donnons nous-même dans [6] est au contraire de type algébrique :

elle consiste à noter que A Am si et seulement si Ap (Ap)m pour tout idéal
A A

premier p non nul de A, puis que Ap (^4p)m si et seulement si Ap (Ap)m;
A

comme Ap est un anneau ^3-adique, il suffit alors d'utiliser le théorème (2.2).
Naturellement, les deux démonstrations sont essentiellement équivalentes;

remarquons simplement que les techniques de l'Algèbre Commutative
(localisation, complétion, sont particulièrement bien adaptées au type
de problème envisagé ici ; nous aurons d'ailleurs une nouvelle occasion de

le constater au paragraphe suivant.

*

Théorème (3.2) (voir [2], th. 1). Pour tout entier positif m, il existe un
entier b (m) tel qu'on ait la majoration

v (m ; A) ^ b {m)

pour tout anneau d'entiers algébriques A.
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Ce théorème est tout à fait analogue au théorème (2.3), à ceci près

qu'il ne nous donne pas d'ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient l'entier positif m et l'anneau-d'entiers

algébriques A, on a l'inégalité

v(m;A) ^ 2m + 8m5.

Le théorème (3.3) généralise l'inégalité

v (m; A) g 2m_1 + (m— l)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas où l'exposant m est premier ;

l'ordre de grandeur est seulement un peu moins bon: 2m au lieu de 2m_1

(ceci tient au fait qu'on est obligé, dans le cas général, d'envisager les

valeurs paires de m).

4. Démonstration du théorème (3.3).

Lemme (4.1). Soient A un anneau, m un entier positif, et B un anneau
quotient de A. On a alors l'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient A1, A2, Ar des anneaux en nombre fini, et soit B
leur produit. On a alors l'inégalité

w(m; B) < sup w(m; At).
i </<r

La démonstration de ces deux lemmes est immédiate; signalons seulement

que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur l'exemple suivant: r 2, m 2, et Ax A2 R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A ayant la propriété suivante :

tout élément de a est de la forme

(4) ± ± à ± ± ams (au a2, ase A);

on a alors l'inégalité

v (m; A) <; + v (m; A/a).
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Il suffit pour le voir d'appliquer la définition de v(m; A).

Lemme (4.4). Soient A un anneau d'entiers algébriques, m et n deux
entiers positifs et p un idéal premier non nul de A. on a alors l'inégalité

w (m; A/pn) S 8ra5.

Prouvons ce lemme: p étant en fait un idéal maximal de A, on a un
isomorphisme canonique

A/y"— AplynAp

(voir [4], chap. II, § 3, n° 3, prop. 9); mais on a également un isomorphisme
canonique

AplynAp cz Ap

(voir [4], chap. III, § 2, n° 12, formules (21), et n° 13, prop. 19). A/pn est
A

donc isomorphe à un quotient de Ap, d'où, en appliquant le lemme (4.1),

A
w (m ; A/yn) ^ w (m ; Ap) ;

A
le lemme (4.4) résulte alors du théorème (2.3), et du fait que Ap est un
anneau ^3-adique.

*

Venons-en alors à la démonstration du théorème (3.3). Soient A un
anneau d'entiers algébriques et m un entier positif; l'identité bien connue
(voir par exemple [5], th. 402)

m— \

(5) m\aX (V)(-l )m-l-h((

s 2 X (V) 2.2ra_1 2m ;

montre que tout élément de l'idéal a mlA est de la forme (4) (voir lemme

(4.3)) avec
m— 1

: Ih o

le lemme (4.3) donne donc l'inégalité

v (m; A) ^ 2m + v (m; A/a).

D'autre part, dans A/a, qui est un anneau fini, — 1 est somme de puissances
miemes, d'où évidemment l'inégalité

v (m; A/a) ^ w (m; A/a).
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Il suffit donc en fait de prouver l'inégalité

(6) w(m; A/a) ^ 8m5;

or, dans A, qui est un anneau de Dedekind, l'idéal a se décompose en

facteurs premiers:

a Pi"iP2n2 P/V

(les P; premiers non nuls et deux à deux distincts, les ^>0), et le « théorème

chinois » (voir par exemple [4], chap. II, § 1, n° 2, prop. 5) donne un iso-

morphisme canonique

A/a ^ (A/vSî) x CA/y2 2) x x 04/p/V);

l'inégalité (6) résulte alors immédiatement des lemmes (4.2) et (4.4). Et le

théorème (3.3) se trouve démontré.

*

Deux remarques pour terminer:

a) Tout d'abord, si l'exposant m est impair, on peut, au lieu de (5), utiliser
l'identité

m l (a + (m-l)/2)(V)(-l
m — 1

qui n'en est d'ailleurs qu'une écriture différente; la démonstration ci-dessus

mène alors à la majoration plus précise

v(m;A) < 2m_ 1 + 8m5.

b) Si maintenant l'exposant m est premier impair, l'inégalité (6) peut être

remplacée par celle-ci:

(8) w (m; A/a) < 2m— 1 ;

il suffit pour le voir d'appliquer le résultat signalé dans les dernières lignes
du paragraphe2. Remplaçant dans la démonstration ci-dessus l'identité (5)

par l'identité (7) et la majoration (6) par la majoration (8), on obtient alors

l'inégalité
v(m;A) ^ 2m~1 +2m-l,

toujours pour un anneau d'entiers algébriques A, bien entendu.
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