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SOMMES DE PUISSANCES m'"*
DANS LES ANNEAUX -ADIQUES ,
ET LES ANNEAUX D’ENTIERS ALGEBRIQUES

Jean-René JoLYy

1. INTRODUCTION

Pour tout anneau commutatif et unitaire 4 et tout entier positif m,
nous désignerons par A, Pensemble des éléments de A de la forme

alm + azm "i“ see + asm

(s positif quelconque, ay, a,, ..., a€A), et par 4, I’ensemble des éléments
de A de la forme

i alm —_t azm i i as'"

(avec également s positif quelconque et ay, a,, ..., aA4); il est clair que 4,,
est le sous-anneau de A engendré par les puissances m'®"¢* des éléments de A4.
Nous désignerons d’autre part par w (m; A) le plus petit entier s tel que tout
élément de A" puisse se mettre sous la forme (1), et par v (m; 4) le plus petit
entier s tel que tout élément de 4,, puisse se mettre sous la forme (2) (bien
entendu, il n’est pas exclu a priori que w (m; 4) ou v (m; A) soit infini; voir
par exemple dans [8], th. (7.30), la construction d’un corps L tel que w(m; L)
soit infini pour tout exposant pair m).

L’étude par des méthodes purement algébriques des constantes
w(m; A) et v(m; A), et la recherche de conditions permettant d’affirmer
que 4 = A,, ont été entreprises notamment par Birch, Ramanujam et
nous-méme (voir respectivement [3], [9], [7]) dans le cas ou A4 est un anneau
B-adique, et par Siegel, Bateman, Stemmler, Bhaskaran et nous-méme dans
le cas ou A est un anneau d’entiers algébriques (voir respectivement [10], [1],
[11], [2], [6]). Naturellement, I’étude de w (m; A) lorsque 4 est un anneau
d’entiers algébriques (ou un corps de nombres algébriques) est étroitement
apparentée au probléme de Waring, qui a fait depuis une cinquantaine
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d’années 'objet de travaux fort nombreux; mais ces travaux reposent
presque exclusivement sur 'application de techniques analytiques (en fait,
diverses généralisations et améliorations des méthodes de Hardy et
Littlewood) et, faute de compétence suffisante en ce domaine, nous nous
abstiendrons de les envisager ici.

En fait, le but de ce court article est de résumer les résultats actuellement
connus (connus de l'auteur, bien entendu) relatifs a w (m; A), v (m; A) et
A,, dans le cas ou 4 est un anneau PB-adique (paragraphe 2) et dans le cas
ou A est un anneau d’entiers algébriques (paragraphe 3), puis de les
compléter en donnant de v (m; A) une majoration explicite et indépendante
de 4, toujours dans le cas ou 4 est un anneau d’entiers algébriques (théo-
réme (3.3), démontré au paragraphe 4); ce dernier résultat est une consé-
quence presque immeédiate d’un résultat de Ramanujam (th. (2.3)) dont la
démonstration, donnée dans [9], est d’ailleurs longue et délicate.

2. SOMMES DE PUISSANCES '™ DANS UN ANNEAU 3-ADIQUE

Pour des raisons de commodité, adoptons une notation: si p est un
nombre premier, si ¢ = p/ (f = 1) est un nombre p-primaire et si m est
un entier positif quelconque, nous désignerons par le symbole [g; m] le plus
petit nombre p-primaire p? ayant les deux propriétés suivantes:

I’exposant g divise I’exposant f;
le quotient (p¥ —1)/(p?—1) divise entier m.

On a alors ce résultat élémentaire (pour une démonstration, voir
par exemple [8], th. 2.3)):

Lemme (2.1). Soit k = F, le corps fini & ¢ = p’ éléments. Si m est un
entier positif, k, est égal au sous-corps de k contenant exactement
[q; m] éléments:

by = F[q; m]

- Ces préliminaires étant posés, désignons par 4 un anneau ‘P-adique
(c’est-a-dire un anneau de valuation discréte complet d’inégales caracté-

e R L SRR
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ristiques & corps résiduel fini), et soient k le corps résiduel de 4, g = 24

le nombre d’éléments de k et e I'indice de ramification absolu de 4.

Théoréme (2.2) (voir [8], th. (2.19)). Les deux assertions suivantes sont
¢quivalentes:

(a) 4 = 4,;
(b) k = k,, et de plus, si p divise m, A est absolument non-ramifi€.

Compte tenu du lemme (2.1), I’égalité 4 = 4,, équivaut donc a la
condition « numérique » ci-dessous:

(c) [g; m] = gq, et de plus, si p divise m, e = 1.

Ajoutons deux choses: tout d’abord, dans un anneau ‘f-adique, —1 est
toujours somme de puissances m'“™® (voir par exemple [8], th. (6.19)):
I’égalité 4 = A,, implique donc en fait que tout élément de A est somme de
puissances m™™eS; par ailleurs, méme lorsque A4 # A,, A, est un anneau
local, séparé, complet, de dimension 1 (mais non intégralement clos), et
A est un A4,-module de type fini (voir [8], prop. (3.14)).

Théoreme (2.3) (voir [9], prop. 3). On a la majoration suivante, indé-
pendante de ’anneau (B-adique) A4:

w (m; A) < 8m°.

Signalons que Birch a donné, par une méthode complétement différente,
la majoration (également indépendante de A) w (m; 4) £ m*°"%; par
ailleurs, nous avons prouvé nous-méme que si m est premier impair, on
a la majoration plus précise w (m; A) < 2m—1 (voir respectivement [3],

th. 1, et [8], th. (7.34)).

3. SOMMES DE PUISSANCES #1'®"°° DANS UN ANNEAU D’ENTIERS ALGEBRIQUES

Soient maintenant 4 un anneau d’entiers algébriques, K le corps des
fractions de 4, et d le discriminant de K; pour tout idéal premier non nul
p de A4, convenons de désigner par ¢, la caractéristique de A/p = A,[pA,,
par e, et f, I'indice de ramification absolu et le degré résiduel absolu de
A, et par Np le nombre d’éléments de A/p = A,/pA,; on a donc
Np = ¢,’p.
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Théoréme (3.1) (voir [2], th. 1, d’une part, et [6], th. 5 ou [8], th. (4.11),
d’autre part). Les deux assertions suivantes sont équivalentes:

(@) 4 = A4,;
(b) Pour tout idéal premier non nul p de 4, on a A/p = (4/p),, et
de plus, si c, divise m, ona e, = 1.

Notons que, compte tenu du lemme (2.1) et du lien entre discriminant
et ramification, I’égalité 4 = A4,, équivaut ici encore a4 une condition
« numérique »:

(c) Pour tout idéal premier non nul p de 4, on a 1’égalité [Np; m] = Np,
et de plus, m est étranger au discriminant d.

(La condition [Np;m] = Np est d’ailleurs automatiquement vérifiée dés
que ¢,> m; il n’y a donc en fait qu’un nombre fini de vérifications numé-
riques a effectuer pour voir si un couple (4, m) satisfait a la condition (c)).

Le théoréme (3.1) a été démontré pour la premiére fois par Siegel
pour m = 2 (voir [10], th. V) et par Bateman et Stemmler pour m premier
quelconque (voir [1], th. 3). En ce qui concerne le cas général, la démons-
tration donnée dans [2] par Bhaskaran est de type arithmétique en ce sens
qu’elle s’appuie sur des calculs de congruences modulo des puissances
d’idéaux premiers; elle utilise d’ailleurs certains des résultats obtenus par
Bateman et Stemmler dans [1} et [11]; la démonstration du théoréme (3.1)
que nous donnons nous-méme dans [6] est au contraire de type algébrique:
elle consiste & noter que 4 = A,, si et seulement si A » = (4,), pour toutidéal

A

premier p non nul de 4, puis que 4, = (4,),,si et seulement si 4, = (4,),,;

comme A, est un anneau *$-adique, il suffit alors d’utiliser le théoréme (2.2).
Naturellement, les deux démonstrations sont essentiellement équivalentes;
remarquons simplement que les techniques de I’Algébre Commutative
(localisation, complétion, ...) sont particuliérement bien adaptées au type
de probléme envisagé ici; nous aurons d’ailleurs une nouvelle occasion de
le constater au paragraphe suivant.

Théoréeme (3.2) (voir [2], th. 1). Pour tout entier positif m, il existe un
entier b (m) tel qu’on ait la majoration

v(m; ) < b (m)

pour tout anneau d’entiers algébriques A4.
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Ce théoréme est tout a fait analogue au théoréme (2.3), a ceci prés
qu’il ne nous donne pas d’ordre de grandeur pour la quantité majorante.
Nous allons combler cette lacune en démontrant le résultat suivant:

Théoreme (3.3). Quels que soient I’entier positif m et 1’anneau. -d’entiers
algébriques 4, on a l'inégalité
v(m; A) < 2™ 4+ 8m°.
Le théoréme (3.3) généralise I'inégalité
v(m; A) £2" 1+ (m—1)/3 + 1

obtenue par Stemmler (voir [11]) dans le cas ou 'exposant m est premier;
I'ordre de grandeur est seulement un peu moins bon: 2™ au lieu de 2"~ !
(ceci tient au fait qu'on est obligé, dans le cas général, d’envisager les
valeurs paires de m).

4. DEMONSTRATION DU THEOREME (3.3).

Lemme (4.1). Solent 4 un anneau, m un entier positif. et B un anneau
quotient de 4. On a alors I'inégalité

v (m; B) < v (m; A).

Lemme (4.2.) Soient 4y, A,, ..., A, des anneaux en nombre fini, et soit B
leur produit. On a alors 'inégalité

w(m; B) < sup w(m; 4,).
1igr

La démonstration de ces deux lemmes est immédiate; signalons seule-
ment que le lemme (4.2) devient faux si on y remplace w par v (comme on
le voit sur I'exemple suivant: r =2, m = 2, et 4; = 4, = R).

Lemme (4.3.) Soient A un anneau, m et s deux entiers positifs et a un
idéal de A4 ayant la propriété suivante:

tout élément de a est de la forme
4) t+af +d% + ... +ad7 (ay, ay, ..., a,€ A);

on a alors I'inégalité

v(m; A) < s+ v(m; A)a).
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11 suffit pour le voir d’appliquer la définition de v(m; A).

Lemme (4.4). Soient A un anneau d’entiers algébrigques, m et n deux
entiers positifs et p un idéal premier non nul de 4. on a alors I'inégalité

w (m; Afp") < 8m°.

Prouvons ce lemme: p étant en fait un idéal maximal de A, on a un
1somorphisme canonique

Afp" ~ A,[p"4,

(voir [4], chap. 11, § 3, n° 3, prop. 9); mais on a également un isomorphisme‘
canonique

A", ~ A, [p" 4,
(voir [4], chap. III, § 2, n° 12, formules (21), et n° 13, prop. 19). 4/p" est
donc isomorphe a4 un quotient de 4,, d’ou, en appliquant le lemme (4.1),
w(m; Afp") = w(m; Ap);

A

le lemme (4.4) résulte alors du théoréme (2.3), et du fait que A, est un

anneau P-adique.
&

Venons-en alors a la démonstration du théoréme (3.3). Soient 4 un
anneau d’entiers algébriques et m un entier positif; I’identité bien connue
(voir par exemple [5], th. 402)

m—1
(5) mla =y (" )(=D"""(a+h"~hmm)
h=o
montre que tout élément de 1'idéal a = m!4 est de la forme (4) (voir lemme

(4.3)) avec
m—1
s =2y (") =22""" = 2™
h=o

le lemme (4.3) donne donc I'inégalité
v(im; A) < 2™+ v(m; Ala).

D’autre part, dans 4/a, qui est un anneau fini, —1 est somme de puissances
m'mes d’ou évidemment I'inégalité

v(m; Ala) = w(m; Ala).
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Il suffit donc en fait de prouver l'inégalité
(6)  w(m; Afa) £ 8m®;
or, dans A4, qui est un anneau de Dedekind, I'idéal a se décompose en
facteurs premiers:
a =P 1P"2... pr

(les p, premiers non nuls et deux & deux distincts, les n;>0), et le « théoréme
chinois » (voir par exemple [4], chap. II, § 1, n° 2, prop. 5) donne un iso-
morphisme canonique -

Ala = (A/p4"1) X (4/p;"2) X ... X (4/p,"r);

Iinégalité (6) résulte alors immédiatement des lemmes (4.2) et (4.4). Et le
théoréme (3.3) se trouve démontre.

Deux remarques pour terminer:
a) Tout d’abord, si ’exposant m est impair, on peut, au lieu de (5), utiliser
I’identité

m!(a+ (m—1)2) = 2_201 (" (=D" " @+ Ry,

qui n’en est d’ailleurs qu’une écriture différente; la démonstration ci-dessus
méne alors a la majoration plus précise

v(m; A) <21 4 8m°.

b) Si maintenant I’exposant m est premier impair, I'inégalité (6) peut €tre
remplacée par celle-ci:

®) w (m; Ala) < 2m—1;

il suffit pour le voir d’appliquer le résultat signalé dans les derniéres lignes
du paragraphe2. Remplagant dans la démonstration ci-dessus 'identité (5)
par I’identité (7) et la majoration (6) par la majoration (8), on obtient alors
Pinégalité

v(m; A) £ 2™ 1 4+ 2m—1,

toujours pour un anneau d’entiers algébriques A4, bien entendu.
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