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UNE REMARQUE SUR { (1+4it)

par Raghavan NARASIMHAN

Le but de cette note est de donner une démonstration du fait que la
fonction { (s) de Riemann ne s’annule pas sur la droite Re s = 1. Cette
démonstration est, en quelque sorte, plus naturelle que la démonstration
habituelle basée sur I'inégalité 3 + 4 cos 0 + cos 260 = 0. Elle est une
variante d’une démonstration due a A.E. Ingham. Pour étre complet, on a
ajouté des démonstrations de quelques résultats classiques.

Lemme 1. La fonction {, définie dans le demi-plan ¢ = Res > 1
par la série

|
C(5)=Z;—s

posséde un prolongement analytique au demi-plan Res > — 1; elle est
méromorphe dans ce dernier demi-plan, et sa seule singularité est un pole
simple au point s = 1.

Preuve. On pose

2

P(x) = — = +

X
— pour 0=x<1,
2 2

et on étend P a toute la droite par périodicité: P (x+n) = P (x) pour
un entier n. On obtient, par sommation partielle,

0

P’ (x) s 1 \
C(s)=sJ‘ xs+1dx+S~_1-—5, Res > 1
1
P (x) S 1
= s(s+1 d - —.
(s >fxs+2x+s—1 2
1

Puisque P est bornée, I'intégrale converge uniformément dans tout demi-
plan Res = — 1 4+ ¢, ¢ > 0, ce qui démontre le lemme.
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Lemme 2. (Landau) Soit f une fonction définie dans un demi-plan
Re s > o, par une série de Dirichlet

2 a
S =2 .
n=1 n
Re q,
n®
point s = g, — 0, 0 > 0. Alors f est singuliére au point s = 0.

/

Preuve. Si f est réguliére au point s = o, et si 0; >0a,, la série de
Taylor

Supposons que Rea, =0 et que la série )

ne converge €n aucun

converge dans l'intervalle 6, — 6 < s < 04, pour un certain 6 > 0.
En particulier, la série

Z f - )m (_ l)m Ref(m) (0_1) — i (0-1 — S)m § (Re a,,) (lOg l’l)m

- m! T n’i

m=0

converge pour o, — 0 < § < 0,. Puisqu’on a une série a termes positifs,
la série
" * Rea, * Rea

y Retn 3 @ g = 3 Ry 3

0 * n=1

n’1

converge pour g, — d < § < 04; contradiction.
0

a, :

Lemme 3. Si f(s) = ), — converge absolument dans le demi-plan
n=21M1 ;

Res > 1, alors la fonction e/ = F(s) est développable en série de

o0

Dirichlet )’ —= dans un demi-plan Res > ¢,. De plus, si @, =0, on a

b, =a, =0.
Vérification directe.

Théoréme. Pour a # 0, { (14-ia) # O.

Preuve. Supposons que, pour un a # 0, { (1-+ia) = 0. Alors { (s)
étant réel pour s réel, s > 1, on a { (1 —ia) = 0. Soit

F(s) = (% (s) { (s+ia) { (s—ia), Res > —1.
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F est holomorphe, dans le demi-plan Res > — 1 en vertu du Lemme 1
et de I’hypothése { (1-+ia) = 0. Du produit d’Euler de { (s), on déduit
immédiatement que F(s) = /¥, ou

2 2+ p* 4 pH 2 1+ cos(kalogp)..

f(s) 22 Z kpks = 22 Z ’

ks
p k=1 p k=1 kp

ici p parcourt les nombres premiers. Les coefficients de cette série sont
positifs. Des trois lemmes, on déduit que pour tout p, la série

0
2
k=1

converge pour — 1 < 5 < oo. Puisque kp** - 0si — 1 < s < 0, il s’en suit
que 1 4 cos (k alog p) — 0 quand & — oo. Mais ceci est impossible, parce
que on aurait alors 1 -+ cos (2k a log p) = 2 cos? (k alog p) — + 2 quand
k — oo. Cette contradiction établit le théoréme.

1 + cos(kalogp)
k pks

Remarque. Si on dispose des propriétés de { dans tout le plan, on voit

e ¢]
immédiatement que F(—2) = 0, et que la série F(s) = ) ”‘Z converge
n=1"
au point s = — 2 (méme raisonnement qu’avant), ce qui impliquerait
a, = 0. Mais F = 0.
Cette démonstration se généralise, par exemple, a4 la fonction { d’un
corps de nombres algébriques.
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