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UNE REMARQUE SUR £ (1+zï)

par Raghavan Narasimhan

Le but de cette note est de donner une démonstration du fait que la
fonction £ (s) de Riemann ne s'annule pas sur la droite Res 1. Cette

démonstration est, en quelque sorte, plus naturelle que la démonstration
habituelle basée sur l'inégalité 3 + 4 cos 6 + cos 20 ^ 0. Elle est une
variante d'une démonstration due à A.E. Ingham. Pour être complet, on a

ajouté des démonstrations de quelques résultats classiques.

Lemme 1. La fonction £, définie dans le demi-plan o Re s > 1

par la série

00 1

C(s) ^n>
n= 1 n

possède un prolongement analytique au demi-plan Re s > — 1 ; elle est

méromorphe dans ce dernier demi-plan, et sa seule singularité est un pôle
simple au point s 1.

Preuve. On pose

x2 x
P(x) —— + - pour 0 ^ x < 1

et on étend P à toute la droite par périodicité: P (x+n) P (x) pour
un entier n. On obtient, par sommation partielle,

OO

f P',:" » 1

{(.) Res>l

s(s + l)
P(x) s 1

77^ UX + — —
x S - 1 2

Puisque Pest bornée, l'intégrale converge uniformément dans tout demi-
plan Re s^— 1 + e, s>0,ce qui démontre le lemme.
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Lemme 2. (Landau) Soit / une fonction définie dans un demi-plan
Re s > <70 par une série de Dirichlet

0°

m £-:•
B=l»

Re
Supposons que Re an ^0 et que la série 2_j —— ne converge en aucun

point s cr0 — <5, S > 0. Alors/est singulière au point s <r0.

Preuve. Si / est régulière au point s cr0, et si cr1 >cr0, la série de

Taylor

L —, (s-gi)"
m 0 m

converge dans l'intervalle a0 — S < s < <j1, pour un certain S > 0.

En particulier, la série

£ Oi-s)m " (cri -5)m " (Re an) (log n)m
S / 1

— l)m Re/(m) (<rt) X S
m 0 m • m 0 m • /i 1 W 1

converge pour cr0 — 5 < s < a1. Puisqu'on a une série à termes positifs,
la série

z, Rean " (<r! — s)m " Rea„ ® Re
y — y ——— (iog«r y —= y —-^ fj°"1 ^ m ^ ^ rtsn—1 ri m 0 rU n 1 U n i U

converge pour a0 — S < s < o1 ; contradiction.
°° ~

E n
— converge absolument dans le demi-plan

n 2*s
Res > 1, alors la fonction ef(s) F (s) est développable en série de

°° bn
Dirichlet Y — dans un demi-plan Re £ > a0. De plus, si an ^ 0, on a

i ns

bn — an — 0.

Vérification directe.

Théorème. Pour a ^ 0, Ç (1 Fia) ^ 0.

Preuve. Supposons que, pour un a ^ 0, C(l+za) 0. Alors £ C?)

étant réel pour s réel, s > 1, on a (1 — ia) 0. Soit

F (s) £2 C?) C Cs+za) C (s — ià) Re 5- > — 1.
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F est holomorphe, dans le demi-plan Re s > — 1 en vertu du Lemme 1

et de l'hypothèse £(1 +ia) 0. Du produit d'Euler de £ (s), on déduit
immédiatement que F (s) ef(s\ où

" 2 + pia + p~ia " 1 + cos (fc a log/?)..
/(s) ï ^ —k7~*— 2II ir-s ;

p k 1 ^i7 p/c l K P

ici p parcourt les nombres premiers. Les coefficients de cette série sont

positifs. Des trois lemmes, on déduit que pour tout p, la série

® 1 + COS (k a log p)
Lu I fcs

fc 1 /c i7

converge pour — 1 < s < oo. Puisque —> 0 si — 1 < s < 0, il s'en suit

que 1 + cos (k a log p) 0 quand k -» oo. Mais ceci est impossible, parce
que on aurait alors 1 + cos (2k a log p) 2 cos2 (k a log p) -» + 2 quand
fc oo. Cette contradiction établit le théorème.

Remarque. Si on dispose des propriétés de £ dans tout le plan, on voit
°° ~

E n
— converge

n i ns

au point s — 2 (même raisonnement qu'avant), ce qui impliquerait
an ss 0. Mais F ^ 0.

Cette démonstration se généralise, par exemple, à la fonction £ d'un
corps de nombres algébriques.
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