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MULTIPLIERS OF UNIFORM CONVERGENCE

by Ronald DEVORE

1. Introduction. If A and B are two classes of 2zn-periodic integrable
functions we say that (4,) is a multiplier sequence from A into B and we
write (4,) € (4, B) if whenever

o0
Y. (a, cos nx + b, sin nx)
0

i1s the Fourier series of a function in A4
o0

Y A,(a, cos nx + b, sin nx)
0

is the Fourier series of a function in B. Let C denote the class of 2z7-pe-
riodic continuous functions and Cp the subclass of those functions in C
whose Fourier series converges uniformly. Karamata [1] has shown that
(A4) € (C, Cp) if and only if

2n

(1.1) [ 14,(0]dt = 0(1) (n— o)

0

where

A, (1) = ) A cos kt.
0

This theorem contains as a special case an earlier result of Tomié [2] who

showed that if (4,) is monotone decreasing and convex (i.e. 4% 1, =
0

M= 2M— 144> 20) or more generally quasi-convex (i.e. ). (k+1) |4 4]
0]
<co) then (4;) € (C, Cg) if and only if 4, logn = O (1) (n— o).
It is interesting to see to what extent condition (1.1) can be relaxed if
we restrict our attention to a sub-class of C determined by some structural
property. For example, let w be a modulus of continuity and C, the sub-

class of C consisting of those functions whose modulus of continuity w ( £, A)
satisfies

o(f,h) = 0(w®) (h—0).
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Then Tomi¢ [3] has shown that for a quasi-convex sequence (4,) to be
in (C,, Cp) it is sufficient that

(1.2) ) (—1—) A, Jlogn =0(1) (n—00).

n

Also Bojanic [4] has shown that sufficient conditions for (4,) to be in
(Co, Cp) are

2n
(1.3) J Y A4, @) |dt = O(n) (n— )
and
(1.4) w(—};) J | A4, (f)]|dt = o(1l) (n— 0).

0

Of course, condition (1.3) is equivalent to (4,) being a Fourier Stieljes
sequence which in particular characterizes the class of multipliers (C, C).

No necessary conditions have been given for (4,) to be in (C,, Cr) and
sufficient conditions have been restricted to quasi-convex and Fourier-
Stieljes sequences. In order to obtain necessary and sufficient conditions
for () to be in (C,, Cp), it is natural to attempt to make C, a Banach space
in which trigonometric polynomials are dense and then invoke the Banach-
Steinhaus theorem as Karamata did in characterizing (C, Cy). The most
natural norm is to define for fe C,

, h
1], = max (nfnw, sup w;{h)))

where || /|, is the usual supremum norm.

The normed space (C,, ||||,) is a Banach space. However, trigonomet-
ric polynomials are not dense in (C,,, ||||,). For if w (#) # O (k) (h—0), then
whenever (7},) is a sequence of trigonometric polynomials which converge
in ||-||, to £, f satisfies

o(f,h) =o(o®) (h—-0).

In the case that w (k) = O (h) (h—0), then a sequence of trigonometric
polynomials (7,) converge in ||||, if and only both 7, an T, converge
uniformly and therefore f'is the limit of the sequence (7,) only if fis contin-
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wously differentiable. Accordingly, when w (k) # O (h) (h—0), we define ¢,
as the class of those functions in C, for which

o(f,h) =o(w®) (h—=0)

and when o (h) = O (h) (h—0) we define c, as the class of all continuously
differentiable functions. ¢, is then a closed subspace of C, and it is easy
to see that if fec,, the Fejer sums of f

a,(f) = | f(OF,(t—x)dt

with

F (0 1 sin(n+1)51\?
" 2n(n+1) sin 1 ¢

converges in ||-||,, to /. Thus, c,, is precisely the closure of the class of tri-
gonometric polynomials in ||||,. It therefore appears some what more
natural to consider the class ¢, rather than the class C, in terms of problems
involving multiplier sequences. For we then have

PROPOSITION 1. The sequence (4,) € (c,,, Cr) if and only if

2%
4,11l = ﬁup HOI f@O4,(t-x)dt]l, = O(1) (n—o0).
TIPS

This is an immediate application of the Banach-Steinhaus theorem [5, p. 60]
and the fact that the operators

L,(x) = [ f()A4,-x)de

converge in ||||,, for each trigonometric polynomial T.

We shall find it convenient to use the following proposition which
follows immediately from the fact that any function f'in C,, with || £ ||, <1
1s the uniform limit of sequence of functions from the unit ball of (c,,
I'llo) (e-g. o, (f) provides such a sequence of functions).

PROPOSITION 2. If A (t) is an integrable function then

Al = sup 1 7@ A, =) dt ||,
Alezr °
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In section 2, we shall consider quasi-convex sequences and show that |
in this case (4;) € (c,,, Cr) if and only if

A, @ (%) logn =0(1) (n—>owo). |

In section 3, we shall give a necessary condition that (4,) be in (c,, Cr)
with no restrictions on (4,). We shall show that (1,) € (c,, Cr) only if
2z

w<%>J | A,(0) |dt = 0(1) (n— ).
0

It is easy to see that this condition is in general not sufficient. For example,
if w (h) = h, then simple integration by parts (see theorem 4.2) shows that

2z t
M, e =§ | JA4,(x)dx|dt+0(1) (n—c0)
0 0

thus, if we let

n,n = 2F |
A, =
o,n#2¢ k=0,1,2,...

then
2n 2n  [loggnl
[ 14,@1de =1 | Y 2*cos2*t|dt=0(m) (n—c0).
0 0 0
Whereas,
2n t 2n  [log2n]
[ I fA,x)dx|dt = | > sin2*¢t|dt
0 0 0 0

and it follows from a theorem of Helson [6] that

2n t

[ 1A, x)dx|dt #0(1) (n—>oo).

0

In section 4, we shall examine sufficient conditions for (4;) to be in
(c,, Cg). First we shall obtain the result analogous to that of Bojanic. In
particular, using the necessary condition given in Section 3, we shall prove
that if (1,) is a Stieltjes sequence then (4,) € (¢, Cr) if and only if

2n

w(%)j A, () ]dt =0(1) (N— o)
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Finally, we shall give a sufficient condition for (4,) to be in (c,, Cr) With
no restrictions on (4,). We shall show that (4,) e (¢, Cp) 1if

(1.5) o) | 14,@)]dt = 0(1)
0
where
2n t
[ 1[4, () dx|dt
fy = s
[ 14, dt

0]

This condition is also necessary in the case that w (4) = O () (h—0). How-
ever, it is generally not necessary. For example, if F(x) is the classical

X
Lebesgue function (see [7, p. 195]), then F(x) ~ 5 is continuous, of
s
. : . : 1
bounded variation, and its Fourier coefficients are not o(—«) (n— o0). Thus,
n

t
if (1) is the sequence of Fourier-Stieljes coefficients of d <F (t)— 5—) we
T

have using the theorem of Dirichlet-Jordan [7, p. 57] that

2n 27

" t
lim | Y= sinkt|dt = | |F(t) — —|dt > 0.
n—s00 0 k 2n
0 0

while by the result of Helson [6]

2x n

[ 1> Acoskt|dt # 0(1) (n— o).

0

Also,
27n n

[ 1> Acoskt|dt = O(logn) (n— )
0

0

since it is a Fourier-Stieljes series. So that, if we choose w to satisfy the
conditions

w<l>f | > Aecoskt|dt = O(1) (n— )

n
0
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and

2n n

o) | 1) Acoskt|dt#0(1) (n—o0)

with
2n 25 /’{k
[ 1> — sin kt|dt
o o k
ﬂn = 2w n
[ A cos kt|dt
0

0

we see that (1.5) is in general not necessary.

Although, we give necessary and sufficient conditions for (4,) to be in
(c,, Cp) in the case that (4,) is quasi-convex or a Stieljes sequence in general
no conditions that are both necessary and sufficient are known.

2. Quasi-convex sequences. We consider first the simplest case of
quasi convex sequences. If we apply Abel summation twice we find

A4, = i(k+1)412 MF (@) +ndi,_F,(0) + 4,D,(1)

where D, is the Dirichlet kernel

D (i) = 1 sin((n+3)1)
"N g sin%t '

2z
From the quasi-convexity and the fact that [ |F, (r)|dr=1, we have
0

2r

MY+ A2 4 Fllles | 1 X+ ) A* 4 F () ]dt = O(1) (n—> o)
0

0

for any modulus of continuity w. Thus
2.1 A4l =0Q) +lIndAd,yF, + 4,D,0ll, (n—>0)

It follows from standard estimates that there exist positive constants
C,, C, such that

1 1
(2.2) C1w<—>10gn§IHDanwéczw(—)lOgn-
n n

This result is contained in theorems (3.1) and (4.1) so we shall not supply
an independent proof.
The main result of this section is
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Tueorem 2.1. If (4,) is a quasi-convex sequence then (4;) € (c,, Cg) if
and only if

(2.1 Ay @ (—%) logn = O(1) (n— o).
Proof: We first consider the case when (4,) is a bounded sequeﬁée. Then
by a result of Tomic [3]
ndl,_; =o0(1).
Thus from (2.1) we have
1l Az llo = O1) + Il 4, D, |1l

and the theorem follows immediately from the inequalities (2.2).
We shall now show that the case (1,) unbounded does not arise. Tomi¢ [3]
has shown that if (4,) is quasi convex and unbounded

then

(2.3) by = An +B +0(1) (n— )
and

(2.4) ndi,_, = —An+o<;12->. (n— 00)
thus if

1
Ay @ (—) logn = 0({1) (n— o)
n
we must have

A
Zlogn = 0(1)  (n—>w)
n

and therefor (4,) cannot satisfy (2.3) and the conditions (2.1) and (4,)
unbounded are not compatible. Secondly, if (4,) is unbounded then by
virtue of (2.1)

A, llle = O) + {Ind 4, F, + 1,D,1ll,
and thus by (2.2) (2.3), and (2.4) we must have

1
(2.5) lHA,,IngAn—ACzna)<—)logn.
n
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For w (h) = h, (2.5) fails and thus (%) ¢ (c,,, Cp) for any w. Thus, (1)
unbounded and (4,) € (¢,,, Cr) are also incompatible.

3. A necessary condition for () to be in (c,, Cg). In this section, we
shall give a necessary condition for (4,) to be in (c,, Cr). Our main result
is the following theorem.

THEOREM 3.1. There exists an absolute constant C>0 such that for any
trigonometric polynomial T of degree n we have

2n

H]TlllwiC?co(%)j | T|dt n=1,2,..

An immediate corollary of this theorem and Proposition 1 is

COROLLARY 3.1. A necessary condition for the sequence (1) tobe in(c,, Cy) is that

w(E)J |4, 1dt =0(1), (n—>00)
n

We shall need some preliminary results concerning representations of

2kmn
trigonometric polynomials. Let x;, = e k=0,1,2,...,3n—1. Then if T
n

is a trigonometric polynomial of degree n, we have (see [8, p. 33])

2 3n—-1
(3.1) T(x) = i Z T(x) K, (x —xp)
where
(3.2) K, (1) = } sin (3 #) sin (3 )

n  2n (sin %)?

Also [8, p. 33]
- 2n “3n—1

(3.3) J 1T ldx < - > TG

0 0

Now to the proof of theorem (3.1). Let O<5<%. We wish to estimate
s : ‘

3n
[ K,(@ndt
—-nd R
3n
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from below. We have for |t ]< ™

1
> -
Kn (t) = T p 7[3
2
So that,
on
3n
K dt>6n 27r5_45
(3‘4) n(t) = —7__;3— 3n - 71:2 .
— 7o
3n
o+ 22

Secondly, for k % 0 we estimate j K, (t)dt from above. For

T

xk—ﬁ
2o
|t —x, | < il , we have
3n
. oT
- sm7 - on 1 _ 96 n
"()_2 2nk 12=n2n(7 1)2 87 (k ;)2
n 52—( 2 3}’1 2
Thus
X+ 55
3.5) |K(t)|dt<45n 9% n 3 62
> " = 3n 8a(k—1?  2(k—1)
2nd
xk'— —37 \
Let g5 (x) be the 2zn-periodic continuous function which has the value
) —7nd no — 271d
one on the interval — | has the value zero on [—=, n] — ,
3n 3n| 3n
27 —nd —7mo 0 27md
e and is linear on the intervals " , ! and n—, il .
3n 3n 3n | 3n 3n |

The function

' 5 3n— 1
G, (x) = co< ”) Y, Sgn (T030) 95 (x )
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is in C, and ||g,||,<1. Also,

2z no

xk+§
T(x) j gs (x) K, (x —x) dx = CO( > | T(xy) | j | K, (x —x;) | dx
Xp— 22
3n—-1 Xj +231;,6
——a)< )IT(xk)l Z I 26|Kn(x'—xk)ldx

J#=k viT T3n

which by virtue of (3.4) and (3.5) is

om 4 3.,°%Y 1
y’(s,;)'T("k”(n—z‘“i‘S P (J—_r‘)‘)

J#k

Thus if we choose 6,>0 such that
4 3 > 1
— 8y — — 04 _-—-—-)—_— Co >0
(7‘2 °2 Ojgo (=2 ’

We have, using the elementary properties of a modulus of continuity
that

2n

1
T (x;) j gs,(x) K, (x —x) dx =z Co (;) | T(x)| k=0,1,2,...,3n — 1

where C is an absolute positive constant. Finally,

2x 2n

f 5 T@ds= = 3 T0) | 53,0 Ky (e -39

0] 0
1 2 3n—-1
>C s T
@ (3n> 2, | T
which by virtue of (3.3.) is

2n

ngw(l)j | T(x)|dx.
3 n

0
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Thus, using Proposition 2,
2z 2n
_ 2 1
N T llle = gao(x)T(X)dxéng - | T(x) | dx
0 0

and the theorem is proved.

4. Sufficient conditions for (1) to be in (c,, Cr). We first establish the
result analogous to that of Bojanic (1.3) and (1.4). The proof is essentially
that of Harsiladze [9].

THEOREM 4. 1. If (4,) is a Stieljes sequence and if
2r

co(%)f | 4,(x)|dx =0(1) (n—> o)

0
then (4,) € (c,,, Cp).
Proof: Let V, (f) be the de la Vallée Poussin sums of f

2z
Volf) = [ f(&)(2F,(t—x) — F,(t—x))dt.
0

It is well known [10, p. 92] that

1
(4.1) Hf = Vo)l éCw<f,;>

where C is a constant independent of f and n. Also if 7 is a trigonometric
polynomial of degree »n then

Vo(T) = T.
Thus if e C,, || f]lo=1

2n

| fOA,(=-x)dt = [ (f@) = V,())(D)4,(t—x)dt +

0

2n
+ [ V() @4, —x)dt.
0

We have

2n

f 1] @F,® —F,(0))4,(t—x)dt|dx = O(1) (n— ).

0

L’Enseignement mathém., t. XIV, fasc. 2. 13
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Since (4,) is a Stieltjes sequence. Thus

2z 2z
1] fOAGE=xdtlle 11| (f(O) = Va(HO(A,(t=x)dt ||, + 1
(0] 0

2n

+ 1 e | 1] (2F2, () = F, ()( A, (t—=x)dt | dx <

0

2n

<IJ (fO = V(HO) 4yt =) dt |1, +O0(1)  (n—o)

0

which by virtue of (4.1) is

2n

§Cw(;1l—>[ | A4, () |dt +0(1) (n—>o0).

0

As a corollary of theorem 4.1 and theorem 3.1, we have

COROLLARY 4.1. A Stieljes Sequence (1) is in (c,, Cr) if and only if

2n

a)<%>f | A, () |dt = O(1) (n— ).

We shall now give a sufficient condition for (4,) to be in (c,, Cr) which
requires no special restriction on (4,).

THEOREM 4.2. A sufficient condition for (1) to be in (c,, Cg) is that

(4.2) o) | 14,@)1dt =0(1) (n—c0)
where
2% x
1] A,@)dt]dx
ty = —— n=0,1,2,...
[ 14, ]dt

If w (h) = h then (4.2) is also necessary.

Proof: We consider first the case when w (h) = h.
If fe C, with || f[|,<1 then

lff&x)| =1a. e.



So that
2n 27n 27 B
| f@O)A,=xdt] = | fOA4E=x)dt] = g | A, (2) | dt
with 4, (t) = [ A, w) du.
Thus,
2n
Ao = § 14,0 1 dt,

the function g (x) = 2= sgn | A, (t)dt is in C, and llg|lo=1. Also
0

fng(t)/ln(t)dt = g 4,2m) = | [A4,@0]dt] = [ [4,@]dt =l
Thus,

2n 2n -

[ 14,01dt =2 £l 4o = § 14,@O1d n=1,2,.

0 0

This shows that (4.2) is necessary and sufficient for (4,) to be in (c,, C)
if w (h) = h.
Finally in the general case, the inequality

2n

1] f@® A, C=x)dtll, Sw@) | 4,0 ]de

is a simple modification of Lemma 1 of [11] and we will not give its proof.
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