Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 14 (1968)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: REPRESENTATIONS OF COMPACT GROUPS AND SPHERICAL
HARMONICS

Autor: Coifman, R. R. / Weiss, Guido

Kapitel: 86. The Fourier transform of functions on $R"n$

DOI: https://doi.org/10.5169/seals-42346

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-42346
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 167 —

where

§ 6. THE FOURIER TRANSFORM OF FUNCTIONS ON R"

We have shown that L? (2,_,) can be decomposed into a direct sum of
mutually orthogonal subspaces (the spaces # ") that are invariant and
irreducible under the action of rotations. There exists a corresponding
decomposition of L? (R") and the spaces making up this decomposition are
intimately connected with the Fourier transform of functions of n real
variables. In this section we shall construct these spaces and study the
action of the Fourier transform restricted to them. We shall see that also
in this situation the rotation group SO (r) and its representations play a
central role.

If f belongs to L' (R") its Fourier transform f is defined by letting

(FHG) = F ) = [, f()e 2 d

R
for y e R™.Y)

Perhaps the simplest class of functions that is invariant under the action
of the Fourier transform is the collection of radial functions. We recall
that these are the functions on R" that depend only on |x|: equivalently,
f1s radial if p, f = ffor all v € SO (n), where the operator p, is defined by

(0, f)(x) = flv™" %)

for all xe R". Since Lebesgue measure is invariant under the action of
rotations and v = v* when v € SO (n),

fnf(x) e—27rix.v—1y dx = jnf(x) e—zniux.ydx — jnf(v—lx)e—-zm'x,y dx .
R R R

That is,
(6.1) (Fp)f = (p, F)f

1) It is not hard to use these results in order to obtain analogous results for SO (3). We refer the
reader to VILENKIN [11] for complete details.

. . . A
1) When f¢ L? (R™) the integral defining f is not defined in the Lebesgue sense. In this case, f is usually
A
defined as the limit in the L2 mean of the sequence fk ) = j f(x) 27XV gy In order to

. o , | x| =k
avoid technical difficulties that arise from this definition we shall resirict our attention to integrable functions
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for all feL'(R". This basic property, that Fourier transformation
commutes with the action of rotations clearly implies.

THEOREM (6.2). If fe L' (R") is radial then f is also a radial function.

In order to extend this invariance property we introduce, for
k = 0,1, 2, ..., the class of functions h® = ¥’ mapping R" into C% having
the form

F(X) =f(IXI)(Y1 (é)a sesy de(é)) = (Fl (X), -":'de (x)) ’

where

x =|x|& [ fMrtdr<oo® and {Y,,Y,,...,Y,}
0

is an orthonormal basis of #{" such that Y, = a, ' Z, (that is, ortho-
normality is to be taken with respect to the inner product (2.6)). Such a
basis was considered, for example, in theorem (2.16). When k£ = 0 this
class is precisely the set of radial functions. It will be convenient if we
choose the Y, ... ¥, to be real-valued.

Let 7™ = (z’) be the matrix of the representation S*" with respect
to the basis { Yy, Y5, ..., ¥,, }; that is, the functions 7’ = 7,; satisfy

dy,
(S5 = Y;(07 '8 = Y 1;(0) V(O
=1

forj=1,2,..,d. If welet
poF = (p,Fy, ..o py Fgp)
we then have
(b, F)(x) = fUxD) (YL (@1 O, ..., Y01 8) =
t11 (V) ... tyg, (V)
o AT A )] R A T

......................

The last equality being the definition of the operator T acting on F.
That is,

(6.3) p,F = T®F

1) This condition merely assures us that the radial function g (x) = f(| x |) is integrable on R"-




— 169 —
for all v € SO (n). If we now apply the Fourier transform to each com-
ponent of p, F, it follows from (6.2) and (6.3) that

(6.4) PoF = p,(F 1,y Fy) = TOF .

The following, together with relation (6.4), shows that F must have the
same form as F; that is,

(6.5) FG) = f QDY) oo Yo ()

for all y = ly]neR".

THEOREM (6.6). Suppose G = (Gy, ..., G,) is a continuous function
mapping R" into C%* such that

(6.7) p,G = TP G
for all v e SO (n), then

G =a;' G (IyID(Yi(n), ..., Yo ()
for all y = | yl in R".

Proof. Letv e SO (n) be such that y = | y|o'1 = |y|v~ 1. Then,
by (6.7)

G = GE 1y = (TP ().

Consequently,
dj

(6.8) G;(») = X ;)G (lyl1)
=1

forj=1,2,..,d.Ifue SO(n—1)theny = lyI"’—ll —y = Iylv—l u il —
= l y | (wv)~* 1; thus, if we replace v by uv in (6.8) we obtain

G;(y) = 21 t; (uv) G (ly[1) .

Integrating over SO (n—1), therefore,

- dk
G;(» = ), G(lylD) J 4 (uv) du .
=1

S0(n—1)

L’Enseignement mathém., t. XIV, fasc. 2. 12
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But, by (3.2) and theorem (3.5) (or (3.15))

t; h I =1
f t; (uv) du = {0” (@) when .

when [ >1
S0(n—1)

This equality and (2.17) show that

G;(») = G, 'yl = G, (YD) V(07D o’

(Since

tlj(v) = tjz(v—l) = Y'(v_lﬁ)-
Writing y = | y ] 1, where n = v~ ! 1, and using the fact that Y, is real-
valued, we obtain the desired result
G;(») = a G (D Y;(n),
j - 1, 2, ceey dk‘

THEOREM (6.9). Let Y be a spherical harmonic of degree k and f a func-
tion on (— oo, o) satisfying

[e¢]

(i) [ 1f) |7 tdr < 0.

0

IFhx) =f|x|)Y (&), when x = |x|6eR",‘then heLl! (R") and
RO =7 (9l YO

for ally = |y|neR" The transformation f — f depends only on k and n
and, in particular, is independent of Y € #".

Proof. Let { Yy, .., Y, } be the basis of #" that was used
in the previous theorem and F (x) = (f(| x |) ¥; (&), ..., /(| x|) ¥, (&) =
(F; (x), .. de (x)). Condition (i) guarantees that each of the functions

F,j=1,.., d, is integrable.') Thus, F = (F 1> s Fg) is well defined,
contmuous (as can be very easily shown), and satisfies relation (6.4). By
theorem (6.6), therefore,

1) Using polar coordinates x = | x | &, w1th £ eX, {, we have .[ [ F] x)|dx = I N
n z
R n—1
{Oj [ £ | pn-ldr} | Yy E) | dE < o, where ©,_1is the “area” of X,

n-1
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lg(y) = ak'lIA’l(Iyll)‘(Yl ), ..., Y (m)) for y =|ylneR".

Putting ]N” (| = a; ' F1(|y|1) we obtain equality (6.5). Since {Y1, . Ya )
is a basis of # we can find coefficients by, ..., b, such that

dr;

Y—-_— ZblYl'

=1

Thus,
dg
h(x) = Y, f(IxD b Y1 (8).
=1

We have just shown that the Fourier transform of F, (x) = f ([ X |) Y, (&)
has the values } (¥ Y: (). Thus,

A dy ~ ~ dj, A
h(y) =X b f (DY =f Uy X Y =FAyD Y.
1=1 1=1

This proves the theorem.

It is not hard to give an explicit form for the mapping f — f in terms
of the Bessel functions

A 1 T 24-1
J, () = 2}&(_7_/? 7 e (1—s%) 2 ds.
r(55)r ()
2 2/ %

We shall show, in fact, that

~ 2—n
(6.10) f@ =yt > J f) T a2 Qntr)yr* dr . D
2

Since }; is independent of ¥ € #\" let us choose & (x) = f (| x |) s (5)
= f(|x|) P® (¢.1). Then

A

) = Ju e (5D PO (E D dx =

1) We shall not calculate Yk, n The fact that this constant equals 27K can be shown by evaluating the

integral in (6.10) when f(r) = eT? (see STEIN and WEIss [10], Chapter 1V, sectlon 3) or by usmg the constants
obtained below.
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0

Wp—y | PTIF{] e72bI@ O PO (£ 1) dE Y dr

Y In—-1

Writing y = ¢ 7, this means that we have to compute

j. o= 2mirt(n-8) p(")(f.l) dt.

In-1
But, by the Funk-Hecke theorem (4.16) this integral is equal to

1 .
n—3
PO p.Da;%c, f e~ 2mirts pO) () (1 —s%) 2 ds.

-1

On the other hand, by (4.4), and, then integrating by parts k& times we have

1 1

, n3 d n3
J\ e~21urtsP(k)(S)(1_SZ) 2 dS — ak,nJ' e—2nirts [Egc (1_32)k+ 2 :Ids

n—3
— ﬁk,n j (rt)k eZnirIS(l . S2)k+T ds .

The last integral, however, is the one involved in the definition of J, when
A = (2k-+-n—2)/2. Equality (6.10) now follows immediately.?)
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1) The Bessel functions we have encountered here arise in much the same way as did the ultraspherical

Polynomials. Instead of the group SO (n), however, one must study the group of all rigid motions on R
(see VILENKIN [11] for details).



	§6. The Fourier transform of functions on $R^n$

