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§ 5. Special results for n 4

In the literature (see in particular Bateman [1] Vol. 2 § 11.6) especially
elegant formulas are given in the four dimensional case. These formulas
can be obtained by using SU (2) as a group acting transitively on Z3.

We begin by identifying R4, C2, R+ x SU (2) { ru: r a positive
real, and u e SU (2) }, via the following maps.

x (x1,x2,x3,x4)^(x1 + ix2,x3 + ûc4) (xuXi)

r .(-X2,Xi\ J-Xi.x'A
-M _ ïUI \x\ux

\ XuXiJ \ XuXiJ

It is easily checked that

Xi.Xi
Uy l

XuXi
belongs to SU (2).

Clearly, when | x | 1 the correspondence x <-> ux permits us to
identify I3 with SU (2). We chose this map x ux in order to obtain
(identifying 1 with (<o, f)).

«.1 - il fe'z'V0UfzM-x.
XuXi/Vj \Xi

If we consider the action of SU (2) on itself obtained by left translation,
this identification allows us to consider SU (2) as a subgroup of SO (4).

That is, for x e R4 and u e SU (2) we let ux | x | u ux. The mapping
x - ux so defined is easily seen to be a rotation.

The normalized Lebesgue surface measure on Z3, being invariant under

rotation, is actually the Haar measure on SU (2).1)

In view of the Peter-Weyl theorem for SU (2), a natural orthonormal
basis for L2 (SU(2)) L2 (Z3) is obtained by considering the matrix entries

of a complete system of irreducible representations.
We let be the irreducible representation of SU (2) realized on

gp(k) tkç Space 0f homogeneous polynomials in z (z1? z2) of
degree k, by letting

p(z) p(u'z)

i) We have J f{u) du J /(up) d£.
SU (2) S3
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As can be seen from (2.6) an orthonormal basis of is given by

//tV/2
PJiz) - n j 7 0,1,...,/:.

We define the matrix entries of dT„k) with respect to this basis by

Pj(u' z) Z
1=0

and we obtain associated functions on R4, which we also denote by t\j\
if we define

T<f(x) I x\kT^(ux)

We then have the following result:

Theorem (5.1). The representations dT{k) form a complete system of
irreducible representations of SU (2). The functions (k+l)T^} (x)
constitute an orthonormal basis ofJtff^ with respect to the inner product introduced
in (3.9).

Proof The completeness of dT{k) follows from the second part of the
theorem and the completeness of spherical harmonics on T3.

For I x I — 1 t\f fx) fk) (ux); thus, the orthogonality relations
follow from the Peter-Weyl theorem.

The dimension of 34?^ is (k+1)2 so that it remains to show that the
functions t\f (x) are actually homogeneous harmonic polynomials of
degree k.

We have by the binomial formula

E i Pj(z)Pj(w)
j 0 Vj)

hence

(5.2) (u'z-wf Z f pj(u'z)Pj(w)Z Pj(w)
J 0 \j) l,j=0 Kj)

By the identification of R4 with C2 we have

(5.3) \x\uxZ'W ~ i zlwlX2 + z2wlXl + zlw2Xl + z2w2Xl)

- * [(Z2W1 + Z1W2) X1 — i (Z21 + zl^l) x2 + (z22 — zlWf) x3 +
4

+ i(z2w2+z1w1)x4] £ djXj.
j i
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Thus from (5, 2), (5, 3)

(5-4) I i (*) Pi 0) Pj (w) E 7y *,/ •

/, 7 0 VjV J 1

Each t^} (x) is a polynomial in Moreover it is immediate that

I d) 0.
7 1

Thus

E dJxj)k k(k-l)(£ djXjf-2( X dy) 0.
7=1 7=1 7=1

This shows that

(x)sMp(4k),

We can now give an explicit formula for t^} (x):
Since

Pjiu'xZ) Zl XlVUl + Z2 Xl)*'1

ÈoC «(*)*! 4-',

letting £ ^1/^2 we have

Q - 0* (Xl - Ï2 sV (Zl s + X2f-j £ Q T^> (x) s'

Let

/(s) T~l2 (Xi s + Zz) »
1 -/(s) r~~~2 (Xi

1*1 1*1

then

(-0' Qt/wnwwr
and using Taylor's formula for the Ith coefficient in this sum we obtain
the classical Jacobi polynomial expression (see Bateman [1] Vol. 2 pp. 254)

W(*) I * i2t (xH~1^ [f (i -
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where

*2*2 1)

I* I''

§ 6. The Fourier transform of functions on R"

We have shown that L2 ±) can be decomposed into a direct sum of

mutually orthogonal subspaces (the spaces JF(nk)) that are invariant and

irreducible under the action of rotations. There exists a corresponding
decomposition of L2 (R") and the spaces making up this decomposition are

intimately connected with the Fourier transform of functions of n real
variables. In this section we shall construct these spaces and study the

action of the Fourier transform restricted to them. We shall see that also

in this situation the rotation group SO (in) and its representations play a

central role.
A

If/belongs to L1 (R") its Fourier transform f is defined by letting

W)(k) / GO SnfWe-lnix'ydx
R

for y e R".1)

Perhaps the simplest class of functions that is invariant under the action
of the Fourier transform is the collection of radial functions. We recall
that these are the functions on R" that depend only on | x | ; equivalently,

/ is radial if pvf — f for all v e SO (n), where the operator pv is defined by

(pj)(x) =f(v^x)
for all a e R". Since Lebesgue measure is invariant under the action of
rotations and v v* when v e SO (n),

\nf(x)e~2*ix-v-%>dx lJ(x)e-2x«dx x) e~2^ dx
R RRThat is,

(6-1) (Fpv)f (peP)f

i) It is not hard to use these results in order to obtain analogous results for SO (3). We refer the
reader to Vilenkin [11] for complete details.

1) When /£ L2 (R") the integral defining / is not defined in the Lebesgue sense. In this case, / is usually

defined as the limit in the L2 mean of the sequence fk {y) J /(x) e~2nix'y dx In order to
\x \ ^ k

avoid technical difficulties that arise from this definition we shall restrict our attention to integrable functions
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