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Theorem (3.15) shows us how the spherical harmonics we introduced
in § 2 can be obtained fromr the general theory of representations of compact
groups applied to SO (n). We have also obtained several properties of
these spherical harmonics by using simple arguments based on this general
theory. We claim that essentially all the well-known classical facts con-
cerning these special functions can be obtained by equally simple arguments.
In the next section we justify this claim by deriving a number of impo1tant
results in the theory of spherical harmonics. Our arguments will again be
based on the general theory of representations of compact groups.

§4. SOME PROPERTIES OF SPHERICAL HARMONICS

The zonal harmonics Z; are often expressed in terms of certain
polynomial functions P restricted to the interval [—1,1] that are called
the ultra spherical (or Gegenbauer) polynomials. We have already obtained
such an expression in § 2. In fact let

4.1 P®@) =dai(t+ Y (—1)fﬁ———1ﬁ2"'ﬁf 5727 (1 —12))

1<jzk/2 Uy 0ly ... O

for —1=2t<1,0;=2j2j+n~3),;, =k -2+ 1)(k—2j+2) and
ar=2,1). If ¢ =(,¢5, ,E)€Z,_; and we put t = &,, so that
1 — 2 =& + ...+ &_,, the expression in parenthesis becomes the
polynomial (2.14) exaluated at £. The observation we made in the
paragraph following the proof of Corollary (2.15) is equivalent to the
fact Z; (&) and P™ (¢) are equal. Writing ¢ = £ . 1 this equality becomes

(4.2) Z,(&) = PO(ET).

Usually, the ultraspherical polynomials are introduced in one of two
ways. One method is to apply the Gram-Scmidt process to the powers
1, ¢, t2, ... restricted to the interval [—1, 1] with respect to the inner product

n—3

1
(4.3) | (f,9) = Jf(f)g—(t_)(l—t") *de.

Another definition of the polynomials P involves the k™ derivative of
(1 _ tZ)(2k+n—3)/2 :

_mya d¥ ke
(4.4 P® (t) — Ofk,n(l ——t2)(3 )/2 21? (1 —-‘tz).( +2k—3)/2
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It is not hard to show that the definition (4.1) is equivalent to these two
definitions. One way of doing this is by first establishing the following
lemma:

LeMMA (4.5). Suppose ¢ is a continuous fuﬁction on [—1, 1] then

1

J @ (Endé = c,,-[ o (D1 —1?) 2 dt
In—-1 -1

where
1
"3
el = J (1—1?) 2 dt.
-1

Proof. This lemma is really of a geometrical nature. First, we note
that
[ @(&nde

1

Sp—

is independent of # since, if « is a rotation,

[ oCQumdé=1[ o@*ndi =] o&nds.

In-1 Zn—1 In—1
Thus, we can choose # == 1. Having done this, we can then evaluate the
integral of ¢ (£.1) over X, _, by first integrating over a parallel perpendicular
tol, o,=1{¢e€X,_y:&.1=cos0}, 0<0 =< n, and then integrating
the function of 8 we have obtained over the interval [0, ]. Since ¢ (¢.1) =
= ¢ (cos 0) is constant over this parallel and the Lebesgue measure of g,
is w,_, (sin §)"~% (where w,_, is the measure of the surface, ~,_,, of the
unit sphere of R”"™1) we must have

[ eEDdE =¢, | 0,_,0(cos0)(sin0)""2d0.
0

Zn—-1
The constant
1

¢y =1/ [ w,_,(sin0)"2d)
-1

must be introduced since we normalized d¢ so that

[ de=1.

Zn—1
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The lemma now follows from the change of variables ¢ = cos 0.
One of the assertions of theorem (3.15) is that

<pag>=[ p®q®de =0 if pe#® and qe#Y.
Zn—1

If we apply this result to p (&) = Z% (&) and ¢ (&) = ZD (&), (4.2) and
lemma (4.5) then imply

. n—3
(4.6) J POMBOPD@H(1—1?) 2 dt =0

when k s j. Since P® is a polynomial of degree k, for k =0, 1,2, ...
we have the following result:

THEOREM (4.7). The polynomials P™ (t), k = 0, 1, 2, ..., form a com-
plete orthogonal system in L* (—1, 1) with respect to the inner product (4.3).
Let

—ny2 dF W
Q (t) = (1 _t2)(3 )2 — (1 —tz)( +2k—-3)/2
dt
and R () a polynomial of degree < (k—1). Then, integrating by parts k&
times, we obtain

1 1
n—3 k (n+2k—3)/2
jR(t)Q(t)(l—tz)Tdt = f R(t)%;(l—tz) dr = 0.

In particular, Q is orthogonal to PY) for j==0,1,...,k — 1. Since QO (¢)
is of degree k it follows from theorem (4.7) that there must exist a constant
« = oy, such that P (f) = o, , O (¢). This is precisely equality (4.4).

The following result, a useful tool in the theory of singular integrals and
partial differential equations (see Calderon and Zygmund [3] and Seeley [9]),
is an immediate application of the relation (3.17) between the inner products
<,>and (,).

THEOREM (4.8). If p is a harmonic polynomial on R" that is homo-
geneous of degree k then there exists a constant B = B (Hoc[ , 1), depending
only on the dimension n and ” o l , such that

[ 1D*p(&)|?de < Bk+DXL[p(&) |2 de.
1

In—-1 Zn—
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Proof. Suppose p(x) = 5 ¢z xP. Since, by assumption, p € # "
||B]| =k |
ap

It follows that any one of its partial derivatives, say — , belongs to #{*~1).

If 2’ denotes summation over all § = (4, B,, ..., ,) such that H ) H ==
and B, > 0, then B

ap
0x,

(x) = Zlﬁn Cpxﬂ_l .

Thus, by (2.6"),

op 0 Bl
<_p,_p> = Y Bulegl?.
6xn axn (k—‘l) Hl}H:k (k— 1) .

Since || B || = k implies B, < k it follows that

! , p! 1
PPy = ”ﬂ%=k ‘g—' | cp | 2 > ||ﬁz”l=k k-1 B, Bk | cg | 2
= icél,,,lz]lk(k-[i!l)zﬁ"'cﬂlz B Elf(%g) ety -
Repeating this argument we obtain
k! 2
(4.9) (D*p, D*P) = |12y ) = [m:l (P, P -

From, (3.17), (4.9), (2.19) ) and (3.19) we then have
[ ID*p(&)|?dé = <D*p,D*p > = A= 11211 D" P D* D) k= 11011

Zp—1
k! 2
S Ak o [m] P Day =

k! 2
= Ak_”“”[(—k—_—_——] At <p,p> = C(a,n, k)f |p(&)]*dE.

el ) !
Zp-1
Here
kKt TP {
C(a,n, k) = A1y l:m] A7 =

. 1) We only announced qqua]ijcy (2.19) and have not proved it. The reader can check that its proof is
particularly easy when the dimension n is even. Equality (2.18), which was proved, can be used here to
obtain essentially the same estimates.

T’Enseignement mathém.. t. XIV. fasc. 2. 1 L
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=(“k—nan>2( i ) ey
a dk"”“” [(k—lla”)']z

_{ "ﬁ 2 +n—2 (k+n—3)12k+n—-2)(k—la]])!
R P j+n—2}{k!(k——Hocll+n—3)!(2k—2l|o¢[|+n—2}}

(k1)
[(k—1alD ]2
The first product in brackets consists of || « || — 1 terms, each less than or

equal to 2; therefore, it is dominated by 2!!*l1=1 The second bracket
times the last fraction reduce to

2k +n —2 k1 (k+n—3)!
2k —2|o|| +n — 2{(k——|lu[|)!(k——|[oc||+n-——3) !}'

Since ||« || < k and 3 < n,

2%k +n — 2 2lall+n=2 2]i«l|

< = + 1 22)|al]l +1.
2%k — 2|l +n—27% n—2 n— 2 = 2llel +

The term in brackets, however, consists of the product of || o || numbers
(k+n—3) (k+n—4) ... (k+n—||o||—2) times another product, k (k—1)...
(k—||«||+1), of || o|| numbers. Since each factor is no larger than
k + n — 3, the term in brackets 1s dominated by

(k+n—3)2Hl < (n—2)2 1=l (1)211=11,
Thus,

C (o, n, k) < 211#10=1 2] |arf] + 1) (n— 2)!1=1 (K + 1)2 1=

and the theorem is proved with B (||«||, n) = 21171 2]|a]|+1) (n—2)> =11,
Many classical formulae are easily derived from the general theory
we have developed. For example, let us consider the relation

(4.10) P@(EYPO (n,) =

1
n—4

= @} Cym1 J P® (&, +(1 =D (1 —np) P ) (1 —1%) 2 dt

-1

which we shall show to be true for all ¢ = (¢4, &,, ..., £,) and

N =Ny 0 ) 10 24
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(the constant ¢,_,; was introduced in the statement of lemma (4.5)). This
is formula (20) on page 177 of the Bateman Manuscript Project [1], Volume 1.

Equality (4.10) can be regarded as a functional equation defining the
zonal harmonics Z; or the ultraspherical polynomials P® (in the same
sense that the relation f(x+y) = f(x) f(») can be regarded as a functional
equation defining the exponential functions).

We claim that (4.10), as well as the statement in the last paragraph,
are nothing but a transcription of the following theorem:

TueoreM (4.11). Let t® . k =0, 1,2, ..., be the function defined by
(3.16). Then,

(9) t© (uouy) = 1% (v)
for ug,u, in SO (n—1) and v in SO (n). Moreover,

(ii) | t® (vuv,) du = t® (v)) t® (v,)
SO0(n—1)

for all v{, v, € SO (n).
Conversely, suppose t is a continuous function on SO (n) that is not
identically zero which satisfies
t(uouy) = t(v)

Jor ug, u, in SO (n—1, v in SO (n) and

J t(vyuvy) du = 1(v,) 1 (v,)

S0(n—1)

Jor all vy,v, in SO (n). Then there exists a non-negative integer X such
that t = t™.

Before proving theorem (4.11) we show that equality (ii) does imply
(4.10). In fact, from (2.17) and (4.2)

ag t® () = P® (41.1)

for all u € SO (n) (recall that 1™ and, therefore, Z, are real valued. This
was shown immediately preceding (3.7)). Thus, (4.11), part (ii), becomes

a; | P (vuv,1.1) du = a; *P® (v,1.1) P® (,1.1)

S0(n—-1)

If we put v, 1= ¢ = (61: 627 “eey én) and 'Z); 1= ‘Z)i 1= H = (’71: Has «ees nn)v
thenv,1.1=¢,andv; 1.1 =1.0;1 =y,
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Hence,
(4.12) az | PO @émdu = PY()PY(n,).
So(n—1)

We now write
E=1=EN"?E + &1 and n=A—-n)"*n + 1,1,

where

& = (6,8, 61,00 and 0" = (1, M2 s Nam1, 0)
belong to X,_; and are orthogonal to 1 (clearly,
& = &A=& and ny = n;/ (L=
when ¢, and 7, are not + 1; in which case, {; =0 =17, for 1 £ j <
n — 1). We shall also denote (¢4, &5, ..., £,—1) and (31, N2, ... fr—y) Y &
and #’; that is, we identify X,_, with those points of X,_, having last
coordinate 0. Thus, for u in SO (n—1)

ul.n=A=EN?A—ng)"Pué .n' + &mn,.

An application of theorem (3.1) and lemma (4.5), therefore, gives us
] PO @émydu = [ PO((1=E)PA—m) & 0" +&m,)dE =

S0(n—1) Zn—2

1
n—4

= Cy—1 J PO (=N (L =)'t + &) (1—1%) 2 dt.
-1
Equality (4.10) now follows from this last one and (4.12).
We now turn to the proof of theorem (4.11). Sincetr { AB} = tr { BA}
for any two matrices 4 and B, we have X, (uy vu, u) = %, (vu, uu,). Hence,
since the Haar measure of SO (rn—1) is both left and right invariant,

t® (@)= | xe(ou)du = | x (Vuquug) du = | v (ugvuu) du =
Somn—1) So(n—1) $o(n—1)

This establishes (i). In order to show (ii) we choose a matrix valued
representation equivalent to S“" in such a way that ¢, (v) = t* (v) for
- ve S0 (n). We can do this, for example, by choosing an orthonormal
basis of #® whose first element is a, ' Z, (see the discussion preceeding
(3.7)). Then, by (1.2),

J t® (vuv,) du = Zk J t11(Vg) tyy (uv,) du

1=1
S0(n—1) 50(n—1)
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and, by (3.2),

ti1 () if 1 =1
du = .
f t1 (uv,) du {0 ifl<l<d,

SO0(n—1)

We therefore obtain the desired result

J t® (vyuvy) du =ty (v)) 11, (v;) = 1% (@) 19 (vy).
S0(n—1)
We now show the converse. Since ¢ (vu) = ¢ (v) for all v € SO (n) and
ue SO (n—1) it follows from (3.4) and theorem (3.15) that

0 dy
t@) = 3 » <Py,
k=0 [=1
the convergence being in L* (SO(n)) (the ¢ 's are the entries of the matrix
valued representation equivalent to S*” that we chose when we established
equality (ii). On the other hand, the fact that ¢ (uv) = ¢t (v) for all
v e SO (n) and ue SO (n—1) implies that ¢¥) = 0 for I # 1, since we can
apply the same argument that was used in order to establish (3.4) by
allowing the first row of (¢f)) to assume the role that was played by the
first column.?) Thus,

0]

(4.13) (@) = 3 D BW = T o),

k=0
the convergence being in L? (SO(n)). Suppose ¢y, # 0 for some k,. Then
de | %@ { | t(vuw)du} dv =

S0(n) S0(n—1)

di | {[ t“@wu™Ht@dv)ldu =

SO0(n—1) SO(m)

di | t% ) (ww ™ N t@)dv = d, | 1% (ouw ) t (vu) dv =

SO0(n—1) S0(n)

dp | {J %O @uw )t doldu =

S0(n—1) SO0(n)

d. | {] t%) (ouw™ ) du ) t(v)dv =

S0(n) S0(n—1)

% SfO(n) t(kO)(v) t(ko)(w—l)t(v) dv = dk—l Cko t o) (w™) = dz:I Cko t*o) (w)

(recall that ™ is real valued and, thus, t® (w™1) = i® (y) = (@ (w)).

¢
i
I3
I

1) The reader can verify that this is the case by replacing T (vu) by T (wv) in equality (3.3).
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On the other hand,
de | 1% @) {] t(vuw)du}dv =

S0(n) S$0(n—1)
=d, [ % @t@t(wydv =d; " Crg L(W) .
SO(n)

Consequently,
Cio t (W) = ¢y t*0) (W), Since ¢, # 0

this implies ¢ = ¢k
and theorem (4.11) is proved.

The fact that relation (4.10) can be regarded as a functional equation
defining the zonal harmonics is not its only significance. The general
methods we used in establishing it are connected with the operation of
convolution in L' (SO(n)), the space of integrable functions on SO (n).
Suppose f, g belong to this space, then their convolution f* g is defined by
letting

(f*)@ = [ fwgu)du
SO(n)
for all v e SO (n).")
- Let {T*}, ae &/, be a complete system of irreducible matrix valued
representations of SO (n). For feL! (SO(n)) we then define its (matrix
valued) Fourier transform (or its system of Fourier coefficients) by putting

A

f@=1] f@T*u du
So(n)
for ¢ e of. If fis also square integrable this definition is consistent with
the Fourier coeflicients introduced in the first section. In fact, it can be
easily shown that Corollary (1.4) applied to such an f is equivalent to the
statement that

o) = Y dor{f @ T @)},

aesd

the convergence being in the L* norm. Perhaps the most basic property
of convolution is that, under Fourier transformation, it corresponds to

1) It can be shown that the function of « whose value is f(x) g (vu 1) is integrable (with respect to Haar
measure) for almost all v e SO (n) and f % g belongs to 1 (SOMm)). Infact || fF* gl = ||fhitllellr,

With the operation of convolution so defined, Ll (SO(n)) is a non-commutative Banach algebra.
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pointwise multiplication. In the present situation this involves matrix
multiplication and the precise formulation of this property is:

THEOREM (4.14). If (f*g) denotes the Fourier transform of the convolutzon
of the integrable functions f and g on (SO (n) then

F*) @ =T @4 @
for all x e .

Proof. Using Fubini’s theorem and the fact that 7%, being a representa-
tion, satisfies 7(v™ ) = T (u™ ') T (uv~') we have

o) @ = (] fWg@uYdu}T 0 )do =

S0(n) SO(n)

[ F@T @] gu )T @ Ydoydu = f (2) g (@)

S0(n) S0(n)

which proves the theorem.

This operation of convolution induces in a natural way a similar opera-
tion on functions defined on the surface of the unit sphere ~,_;. Suppose f
and g are two such functions and let us assume that they are integrable with
respect to Lebesgue measure on X,_,. Then the functions f# and g7,
whose values at v € SO (n) are f7 (v) = f(v1) and g7 (v) = g (v1), belong
to L' (SO(n)) and
(fP*gH)@)= | fwDg@w 'Ddw= [ fluwDg@w 'u'1)dw=

S0(n) 50(n)

= | {| fwh)g@w '1)dw)du.
SO0(n—1) SO(n)
Let £° (&) = [sow-1,f @) du. Ifvl = ¢ forv e SO (n) we put 1 (v) = f° (v1).
The function 7 when satisfies ¢ (u; vu,) = ¢ (v) for all u;, u, € SO (n—1).
The fact that ¢ (vu,) = 7 (v) for all v € SO (n) is obvious while, since the
Haar measure of SO (n—1) is translation invariant,
t(u0) = fO(upl) = | fluuwl)du = | fwol)du = t(v).
S0(n—1) S0(n—1)

But, in the proof of theorem (4.11) we showed that a function ¢ satisfying
this property has the expansion (4.13). In view of (4.2) and (3.16), there-
fore, we see that f© depends only on ¢.1. We shall write, therefore,

fo(€1) = § fwé) du .

S0(n—1)
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Thus, \ A
(fP*g") @) = | gew 'D{] Sfuwl)du}dw
S0(n) SO0(n—-1)
4.15) =7[ gw ' Dfiwl.Ddw = [ gwlfo(w vl.l)dw =
S0(n) S0(n)
= [ folwh)gwlhdw = [ fo(&n)g(n)dn.
S0(n) Zn—1

This shows that the convolution of f# and g# depends on f;, and g only
(not on f, except in so far as f determines f,).

Suppose g = p is a spherical harmonic of degree k; that is, p belongs
to # Y. Then, by (2.17),

dy
p(vl) = Z bjtjgk)(v)-
je=1

On the other hand, as we have just observed, f, (v1.1) has the expansion
(4.13):

0 0

fo@ll) = 3 %@ = ¥ fff ().

k=0 k=0

Moreover, (4.15) shows us that in calculating the convolution f# * p# we
can assume that f# (w) = f, (wl.1). In this case,

¢, 0...0
(o) = 00...0 i
00...0

when o = o, € &/, (see theorem (3.15)) and f («) is the zero matrix if

ae o/ — o,. Moreover, p7 («) is the zero matrix if « # o, and

by by ... by
oy —ai| O 00
o
Thus, by (4.14)
by b ... by,
G ? @) = cdi? [0 00 ) =t e n” ()
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and (f#*p#)" (0) = 0 if o # oy. Since the system {7”} is complete it
follows that f# * p# = d; ' ¢, p™. This argument, in particular, proves the
following classical result:

THeOREM (4.16). (Funk-Hecke theorem). Suppose p is a \;pherical

harmonic of degree k and F an integrable function on [—1, 1] with respect to
n—3

the measure (1—t2) 2 dt then

[ FEmpmdy =yp ()
Ih-1
where,
1
n—3

"o=n =’ J FOPY()(1-1) 7 dr.

-1

Let us consider functions f on X,_, that, like /°, depend only on £ . 1.
That is, f (ué) = f(¢) forallue SO (n—1)and £ € 2,_;. We have showed
that if f# is integrable then its Fourier transform is zero if 7 is not equivalent
to any of the representations S*" and

10 ... 0
A 00 ... 0
f# (a) - ’Yk -------

00 ... 0

when T* is equivalent to $*" (this was shown in the proof of (4.13) when
the function is continuous. The more general result for integrable func-

tions is an easy consequence of this more particular case). In this case we
shall write

}#(k) = Yk >

k=20,1,2,... Thatis, we identify «, with k£ and the number y, with the
matrix whose entry in the first column and first row is y, and having all

other entries equal to zero. Thus, from the definition of the Fourier
transform,

7 =[] fAWtPw Hdu = [ f*w)t®wdu.

50(n) S0(n)

By theorem (3.1), equality (3.16) and the definition of f#, the last integral
is equal to

aizg F(Z, (D) de.

n—1
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It is natural, therefore, to define the Fourier transform f of f by letting

@17 f W =at | fOZOdE =ai? [ FEPD(ET)dE
1 ,

In—1 In—

fork =0,1,2, ...
If f and g are two such integrable functions, say f () = F(£.1) and
g (&) = G (£1) with

1 1
n—3 n—3
JIF(t)I(l—tz)Tdt<m and JlG(t)l(l—tz)Tdt<w,
1 -1

then, by (4.15),

(4.18) f)ygky =[] F(&nGuDdy] k),
In—1
k=20,1,2,.... From this we easily deduce that the algebra of this
type of integrable tunctions on X,_; with the convolution defined by
(4.19) [ FEmGu.dn = (f*9) (&
In—1

is a commutative Banach algebra. The fact f* g is also a function that
depends only on & .1 is easily shown: if ue SO (n—1) then

[ Fén)Gmlydy = [ FEu*n)Gul)dy =

Ipn—-1 Zn-1
sz F (E.u*n) G (u*n.1)dn =Ej F(&.n) G(n.1)dn.
n—1 n—1

That is, (f*g) Wé) = (f*g) () forall ue SO (n—1) and (€ X,_,.
If we left

6 = (619“'9 fn—-laén)a n = (7]19"'9 Ha—1> ’7n)>
(1 _éi)l/z 6’ = (519 siay 5n—1) and (1 _173)1/2 17, == (;713 seey nn—l)
the integral in (4.19) becomes

[ FEn+A—=E)2 Q-2 ¢ . q") Gy, dn.

Zp—1

In order to express the fact that this integral defines an operation on func-
tions defined on [— 1, 1], we shall also denote it by (F*G) (&¢,) =




— 163 —

= (F*G) (¢.1). Putting 5, =cosf, 00 =n, t=¢ .7, s=¢, and
applying an argument similar to that used in the proof of (4.5) we obtain
the fact that (f *g) (¢) is equal to

(4.20) (F*G)(s) =

11
n—3 n—4
Cu—1Cp J J F(sr+(1=s)2(1—r)20) Gy (1 -7 2 (1—¢%) ? drdt.
-1 -1
It follows from our discussion that this operation (F, G) - F* G 1s

commutative and, with it, the linear space L} (—1, 1) of those functions F
satisfying

1 s
|WH=QfLNMU%WTm<m
—4

is a Banach algebra.
Formula (4.10) can now be given additional meaning. Putting &, = r
and 5, = s it becomes

(4.21) PO (1 P® (5) =

1
n—4

=a’c,_, f PO (rs+(1—=r)"? (1 =24 (1% 2 dt.
-1
If we define the Fourier transform of Fe L) (-1, 1) by letting
1
~ s
F (k) = a;’c, j F()P®(s)(1—=5?) 2 ds
-1
for k =0,1, 2, ... (compare with (4.17)), formula (4.21) can be used to
readily imply that

F(0G () = [F*G] ()

for k = 0,1, 2, ... (compare with (4.18)).%)

1) The convolution (4.20) was studied by Bochner; see Proc. Nat. Acad. Sci. USA, 40 (1954), 114-1147
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