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for all w, v g G and i 1, 2, d. Thus, LT= which shows that
each of the representations RU) are equivalent to T. The theorem now
follows immediately.1)

§ 2. The construction of irreducible representations
OF SOME SPECIAL GROUPS

In this section we show how one can obtain irreducible representations
of some of the classical compact groups. In many cases we describe several

representations that are equivalent to each other. We shall see that often

one of the members of this equivalence class of representations has special
features that make the study of certain properties particularly easy.

If we are given two finite dimensional representations of a compact

group G that act on the Hilbert spaces H and K, we can obtain a third
representation of G by constructing the tensor product of H and K. The classical

definition of this concept is the following: We choose orthonormal bases

{ eu e2, em } and {/1?/2, } of H and K, respectively, and we assign

to each of the m • n pairs (eh fj) a " product " et ® /)•, called the tensor

product of the elements et and fj. We then obtain a new Hilbert space by

considering all the linear combinations

mtn

Z aij(ei®fj)>
i,j=1

defining addition and scalar multiplication by letting

m,n m,n m,n

Z aij(ßi®fj)+ Z Z
i,j=l i,J= 1 j— 1

m,n m,n

C z aij(ei®fj) Z
i,j= 1 iyj= 1

and the inner product by letting

/ m,n m,n \ m,n

Z Z bu(«i®//))Z
\i, v'=I i,j= 1 / j~ 1

This space is denoted by H ® K and is called the tensor product ofH K.

It is clear that { et®fj},1 ^ i^ m,1 ^ _/ ^ «, is an orthonormal basis

1) We observe that L is an isometry. We will make use of this fact later in § 3.



of H® K.If a Yj aieieHandb E bjfj e K the tensor product
i= 1 j 1

m,n

of the elements a and b is defined to be the element a®b £ at b j (et ®fj)
i,j= 1

of H ® K.

H ® K can be identified with the linear space if (H, K) of all linear
transformations mapping H into K in the following way: to each element

ei ® fj we assign the transfoimation mapping onto fj9 and ek, for k ^ z,

onto the zero vector of K. We then extend this correspondence linearly
to all of H ® K. If we represent the elements of (H, K) as n X m
matrices with respect to the two bases in question, this correspondence

m,n

assigns the matrix A (aji) to the element £ ajt ® f)). If B — (bji)
i> J — 1

is another such matrix, it is easy to check that the inner product of the
elements of H ® K corresponding to A and B is tr (AB*). We identify
H ® K with ££ (.H, K) ; moreover, we will not use different notation to
distinguish the latter space from the corresponding linear space of m x n
matrices.

If u g if (H, H) and v e if (K, K), we obtain a linear transformation
u oï H ® K into itself by letting

(2.1) (u ®v) t vtu'

for all t e H ® K (we are regarding t as a member of if (H, K) and «' is the
transformation whose matrix with respect to { el9 e2, } is the transpose
of the matrix of u). The transformation u ® v is called the tensor product
of u and v. An equivalent way of defining this tensor product is the
following one: Suppose

m n

Y au ei and vfj E bkjfk then we let
1=1 k l

m,n

(2.1') («®v)(e,®/,) (ue^Wj)Y
l,k= 1

and extend u ®v linearly over all of H®In order to see that (2.1) and (2.1') define the same transformation,
it clearly suffices to show that they agree when applied to the basis vectors
Uj ®frFrom(2.1) we have (u ® v) tu vttJ u. Thus,

m n

l(u®v)tij~]ervttJ Y arkek varifj ari Y bkjfk.
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On the other hand, from (2.1') we have

m,n m

[(u ®v) f,7] er £ au bkjS ari btjfk
I, 1 k 1

Thus, in either case we obtain the same transformation.
We now show that if u and v are unitary so is u ® v. Since u ® v is

a linear transformation on a finite dimensional Hilbert space it suffices to

prove that it is an isometry. But, \ï t e H ® K we have

|| (u®v) 11|2 (fu®v)t, 0u®v)t) tr {vtu' {vtu') *}

tr { vt (u*u)' t* v* } tr { vtt* v* } tr { tt* } (£, t) | U 112

If u is a representation of G acting on H and u - Tu is a
representation of G acting on then

(Sw ® Tuu) t Tuv tSuv Tu Tv tSv Su (Su ® Tu) (£„ ®Tv)t

for all u, v e G and t e H ® K.
We can summarize these results in the following way:

Theorem (2.2). If u - SM tf/zJ u TM /wo representations of G
acting on the Hilbert space H and K respectively, z^e/z the mapping
u -> Su (x) Tm zs ö representation of G acting on the tensor product H (x) K.

If Hu H2, Hk are finite dimensional Hilbert spaces we define their
k

tensor product ® Hj inductively by letting
j i

k /k — 1 \
® Hj® HA <S> Hk

j i \j i /
k

for k > 2. We ahsll often write Hl ® H2 ® ® Hk instead of ® if,-.

By making obvious identifications we may regard this product to be

associative; the same remark applies to the k-fold tensor products

at ® a2 ® ® ak, where aj e Hj for 1 ^ ^ k. We shall be interested

mostly in the case H1 H2 Hk H and we shall denote the

tensor product of k copies of H by ZT*"k) (H) or, if there is no chance of
confusion, simply by £T{k). We shall fix k for the remainder of this
discussion.

If { ex e2,..., en } is an orthonormal basis of H and A is the set of all
^-tuples of integers, m (m1, m2, mk), with 1 ^ mu m2, mk g n,
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then the collection {am }„ e
where em ® ® emk, is an oitho-

normal basis of ST(k). Thus, the general element t of this tensor product

has the representation

I X! 5

meA

where the tm 's are complex numbers.

The tensor product u1 0 u2 0 ••• 0 uk of k linear transformations

u1, u2, uk mapping H into itself can also be defined inductively by

extending (2.T). Its action on the basis elements em is given by

(u1®u2®...®uk)em (u1emi) 0 (u2 em2) 0 ®(ukem]).

When ul u2 uk u we denote this tensor product by Tu. If

(Ull

U12 Uln\
U2l U22 ••• U2n I

^nl ^«2 ••• Unn/

is the matrix of u with respect to the basis { eu e2, en } we then have

(2.3) Tusm
jeA

where

~ Uj\mi Uj2m • ' • Ujkk

for j (juj2, —,jk) and m (m1? m2, mk) in A. It follows from
theorem (2.2) that the mapping u -» Tu is a representation of the unitary
group of transformations on H. This representation acts on y(fc). When
k > 1 this is not an irreducible representation. In order to exhibit a proper
invariant subspace of dT{k) we introduce the subspace 6T^k) of symmetric
tensors of degree k: If t is a permutation of { 1, 2, ...,k } and m e A we
let rm { mT(1), mt(2), mx(k) }. Then

SfM {t £ (m £m in «jr») •

m£/l

for all permutations t and m e A }.

Theorem (2.4). The subspace ls invariant under the action of the

representation u - Tu u 0 u 0 0 u of the unitary group of
transformations on H.
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Proof. We first observe that for any permutation x of { 1, 2, k) we

have

(2.5) {Tu)xj,m (Tu)Lt-im.

This equality is an immediate consequence of the definition of the coefficients

(Tu)jtm (see (2.3)) when t is a transposition. The general case is then
obtained by writing x as a product of transpositions.

Consider the set of all n tuples a (al5 a2, a„) of non-negative
integers satisfying || a || a1 + a2 + -.. + ocn ^ k and let Aa be the set

of all the m (m1, m2, mk) in A such that z, 1 ^ ^ n, is one of the

components of m precisely oq times. We then have A U Aa and
\\a\\ k

if me Ax then xm also belongs to Aa. Moreover, it is easy to see that the

collection of all, oa — £ sm, || a || k, is a basis for ^(k). Conse-
m sAa

quently, it suffices to show that Tuaae ^(/c) when || a || k. By (2.3)

we have

Tucra= £ Tuem Z Z *}) Z( Z
mzAa msAa jeA jsA tmAa

If x is any permutation, it follows from (2.5) that

Z Z (Tu)jiZ
msAa meAa meAa

Thus, the coefficient of s j equals that of szj in the above expansion of Tu <ra.

Hence, Tu oa e (k) and the theorem is proved.
We shall show that the restriction of this representation u -> Tu to 6P{k)

is irreducible. This is particularly simple to do if we examine a representation

that is equivalent to it that acts on the vector space k,n)

of homogeneous polynomial functions of degree k of the n complex
variables z — (z1? z2, zn). We use the following notation in our
discussion of this space: If a (al5 a2,an) is an «-tuple of non-
negative integers we put za zji z22 z*n when z (z1? z2, zn) e C",

a ocjl Î a2 a„ Î and, when || a || k, (*) —k / a (note that (£)

is the number of elements in the set Aa we introduced in the last proof).
The polynomials

fk\ k\
*.(*) 7*5**52...#,

\aj ccf. cc2\ ccn!

|| a || k, form a basis of ^k\ We have just observed, however, that
the elements aa ßjn, || a || k, form a basis of the space ^(fc) of
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symmetric tensors of degree k. We can, therefore, extend the map oa -» pa

linearly and obtain a one to one linear transformation n =* n(k) of £f{k)

onto ^(/c). This transformation is an isometry if we introduce an inner

product on ^(/c) by letting (ns, 7it) (s, t) for all symmetric tensors ^ and t
in Obvious consequences of these definitions are: ifp — 'Y capa

|I«|| fc

and q Y 4tPa ^en
IHI=k

(2.6) (p,q) y ca3a(aa,<rtt) X ca3a
ll«ll=t

On the other hand, if p(z)£ za and (z) J] z"' then
IMI=* IMM

a*ba
(2-6') Gh <?) X

.«-* ©
d d 8 \d"i 8*2 d"<>

LetD —D=Kdztdz2dzj
and, for p (z)X aa z*in 0>(k\ put

IHi=*

p(D)X
ll«ll=*

Then, if q(z) X baza we have
ll«ll=*

(2-6") (P.Q)=~ X u\ax
M

If a 11 fc fc!

where

<Z (z) X Z" •

ll«ll=fc

Theorem (2.7). Foreach unitary transformation H /er S„ Z>e the
transformation on that maps a polynomialfunction p into the polynomial
function q (z) p (u' z), where u' isthe transpose of the matrix of u with
respect to the orthonormal basis { el5 e2,..., e„ }. Then S: u -> S„ a
representation of the unitary group of transformations on H that is equivalent
toT: u -> Tu. In fact,

(2-8) n TuSu7i

for all unitary transformations u on H.

(fc)11 Calder6n and in the Previously mentioned Chapter IV of Stein and Weiss [10] the inner product
°n was introduced by formula (2.6"). It appears much more natural in this context when we see its
connection with the inner product of yW.
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Proof. Let L:£s~(k>- £P(k) be the linear transformation that maps

8« emi ® em2 ® 0 emk into

Since Ax has (f) elements it follows that

L<Ta £ Lsmz" Pa 0) Xa
meA(XneAr

That is, 7i is the restriction of L to 5P{k).

In order to show (2.8) it suffices to show that tzTu oa Su naa for all
unitary transformations u on H and II a II k. We have, by (2.3),

where

Thus,

I Tuem £ £ (L„);,m
meAa mEAa jeA

iTu)j,m &j Uj\m\ Uj2ni2 Ujkk Sjl ® ej.

LTuaa X X uj
meAa jl,...Jn=1

n n n

=I Z UJrn Zj)( Zuim2 Zj)-(I Zj) PM z) SuTtOx
meAa j l j 1 i 1

Since era g SP(k) by (2.4), we have LTuoa nTu aa. Hence, nTu aa Sun<ja

for JI a | | k. This shows that (2.8) is true. The fact that SU1UZ SU1SU2

for any two unitary transformations ul and u2 is immediate. In order to
establish the theorem, therefore, we must show that Su is unitary. But,
if p and q belong to SP(k) there exist (unique) symmetric tensors s and t
such that p us and q nt. Then,

(Sup,Suq) (Suns, Sunt) (nTu s,nTut) (Tus,Tut)

(5, t) (715, Tit) (p, q)

which shows that is unitary.

Theorem (2.9). The representation S: u -* SM fs1 irreducible.

Proof. We first observe that it suffices to show that any linear
transformation A on ^(/c) such that ASU Su A for all unitary u must be a

constant times the identity. To see that this is the case, suppose S leaves



— 133 —

a subspace V c= PP{k) invariant and P is the projection of ^k) onto V.

Since V is also invariant it follows that PSU — SUP for all unitary transformations

u on H. Consequently, P must be a constant times the identity
transformation on ^(/c). But, since P is a projection, this constant must
be either 0 or 1 ; thus, V is either { 0 } or k\ which means that SAs irreducible.

Suppose, then, that the operator A commutes with the representation S

and let u be the unitary operator whose matrix with respect to { el9 e2,en }
is diagonal with Ujj el9i, 1 ^ j g n. Then

(suPa)(z) Pa{u'z) ô(^z1ri(^z2)a2...(^z„)v
If we let 0 (0l5 02, 0„) and 0 a 91 a1 + 02 a2 + + 0„ a„ we
can express the action of Su by the simple formula

SUP„

Suppose A, on the other hand, transforms the basis elements pa in the
following manner

Apa £ aßa
II/»II *

Since ASU Su A we then must have

Z £
11011 * 11011 *

Consequently, aßxei8'paßxeie'afor all «-tuples 9 (9U 02, 03,
Thus, either, a ßor aßa0. It follows that APa ~ ampa for || a || k.

If BA AB, where Bisa linear transformation satisfying

Bp„= I bpxPß for || a || fc,
11011 *

we must have

Z bßx axx pp— BApa ABpx ^ bßaaßßpß.
11011 * 11011 *

Thus, bßa aw. Thus, if we can find such an operator B with
bßa # 0 for some aand all ß(\\ß\\ /c) it would follow that aax aßß
for all a and ß. This would show that is a constant times the identity
operator and the theorem would be proved. In order to obtain such
a B we choose a unitary operator on whose matrix with respect
to {e1,e1,..., e„}has no zero elements in the first column (i.e.
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/ 1, 2, ...,«, is not zero). With a (A:, 0, 0) (that is, pa (z) z\)
we then have by (2.7)

(S„Pa)(z) ^(V z) (z1M11+Z2M21+...+Z„Mnl)ft

S »îî«fî-"nîZP-
|| 0 H k

Clearly,

bßx uiiu2i•••#«"^ 0

for all ß satisfying || ß || k and the theorem is proved.
Since and T are equivalent representations (theorem (2.7)) we have

the following corollary of (2.9):

Corollary (2.10). The representation T: u-»Tu is irreducible.

When the Hilbert space H is «-dimensional Euclidean space C" the

group of all unitary operators on H is called the unitary group on Cn and
is denoted by U («). The same notation will be used for the group of
matrices of the operators in U (n) with respect to the standard basis

ey (1, 0, 0), e2 (0, 1, 0),... en (0, 0, 1). The special unitary
group, SU (;n), is the subgroup of those elements of U («) having
determinant 1. The spaces and ^(fc) are obviously invariant under the
restrictions of the representations T and S to SU (n). It is not hard to
show that these restrictions are irreducible representations. By the
equivalence (2.8) it suffices to show that this is true for the representation S.

But this requires only one simple change in the proof of theorem (2.9):
Instead of the equality aßa eld'a aßa el9'ß holding for all «-tuples
6 (01? 02, 0n) we obtain this same equality for all «-tuples 6 satisfying
01 + $2 + ••• + — 0 (thus, det u 1). This suffices for obtaining the
conclusion that either a ß or aßa 0. For, if aßoL ^ 0 thenel0'a el9'ß

for all such «-tuples 6. Thus, if r is any real number we must have
gird • (a— ß) j whenever 0L + 02 + _ + Qn _ Q. But (o^ - ß ß) +
+ (a2 ~~ ßi) + ••• + (an — ßn) k ~ k 0. This allows us to choose
0 a — ß and we obtain

eir(cc-ß)-(a-ß) __ J

for all real numbers r, which can occur only if a ß. We have shown,

therefore, the following corollary:

Corollary (2.11). The restrictions of S and T to SU (n) are equivalent
irreducible representations of SU (n).



— 135 —

It is clearly not reasonable to expect that the restriction of an irreducible

representation of U (n) to a subgroup is also an irreducible representation
of the subgroup. If we consider the orthogonal group 0 (n) (i.e. those

operators in U (n) whose matrices with respect to { eu e2, en } have

only real entries) and restrict S, or T, to 0 (n) we do not obtain an irreducible
representation. In studying the problem of how the space k) can be

decomposed into subspaces that are invariant under the action of S
restricted to 0 (n) it is more natrual to consider the elements of to be

polynomial functions of n real variables. Thus, if we denote this restriction
by S° and x (xl5 x2, xn) is a point of /z-dimensional real Euclidean

space R" then (S°up) (x) p (u x) for each u e 0 («) and p e ^k).
We denote the inner product of two points x (x1? x2, xn) and
3; Oi, yn) of R" by x • y x1? yl9 + x± y2 + + yn\

I x I ^jx • x is then the Euclidean norm of x. Since this inner product
is invariant under the action of 0 («) (that is, (wx) • (uy) x • y whenever

we 0 («)) the subspace

I x J2 0>{k-2) | p G : _ I x I2 q (x) with q e 0>(k~2) }

when k > 1, and

I x |2^(*-2) {0} When fc 0,1

is invariant under the action of S°. Consequently, the orthogonal
complement 3/?(„k) of this subspace is also invariant. We let Sk,n denote the
restiiction of S° to {k\ Thus, for each we 0 («), Sk>n =» Sk'n (w) is
the operator mapping a polynomialp eJf{nk) into the polynomial q p
whose value at x is p (u x) p (u~l x).

We recall that the differential operator

a2 d2 d2

dx\
+

dx2
+ +

dx2

is called the Laplacian. If a function / defined in a region of Rrt satisfies

Af=0 then / is called a harmonic function.

Theorem (2.12). The representation S/c'" of 0 (n) is irreducible. The
space je(nk) on which it acts consists of all the harmonic polynomial functions
on R" that are homogeneous of degree k. k) is the orthogonal direct sum
of and the subspaces

M2J J){p eplk).p(x)=[xl2jqq e ^(t-2y)} s l|iSfe/2;
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moreover, the restriction of S° to each of these subspaces is an irreducible

representation of 0 (n).

Proof. By (2.6") and the definition of {nk) we must have, for p e

0 k \ (r, p) r (D) p for all r e | x |2 ^k~2\ k ^ 2 (when k <2
polynomials in ^(/c) are obviously harmonic). In particular, if we choose

r (x) I x |2 q (x) where q Ap we have, since | x |2 q (x) q (x) | x |2,

0 q (D) Ap (Ap, Ap). But this means that Ap 0; thus, p is

harmonic. The converse, that each harmonic polynomial that is homogeneous
of degree k belongs to f\ is evident.

If we show that Sk,n is irreducible the rest of the theorem follows
easily by induction. We shall, in fact, prove the irreducibility of the

restriction of Sk,n to the special orthogonal group SO (n) consisting of those

orthogonal transformations that have determinant 1 (these transformations
are called rotations and SO (n) is also known as the rotation group on R").
The group SO (n— 1) can be identified is a natural way with a subgroup
of SO (n). This can be done by fixing the vector 1 (0, 0, 1) in R"
and considering the subgroup G c SO (n) of all rotations leaving 1 fixed.
Each such rotation effects a change in the first (n— 1) coordinates of a point
of R" and can, therefore, be considered a rotation acting on Rn_l. We
shall write SO (n — 1) G c= SO (n).

The theorem will be established if we show that (i) IfRis the restriction

of the left regular representation of SO (n) to a subspace V of ^k) then there

exists a polynomial qeV that is invariant under the action of SO(n— 1).

That is, q (u~1 x) «t q (x) for all u e SO (n — 1) ; (ii) If W is a subspace ofJ^lk)
consisting of vectors that are invariant under the action of SO (n— 1) then the

dimension of W is 1.

If Sk,n were not irreducible then Z/f(k) would be the direct sum of
(at least) two invariant subspaces. By (i) each of these subspaces must
contain a vector invariant under SO (n— 1); but this would contradict (ii).

To show (i) we choose an orthormal basis { Y) } of V and, for each pair
of points x, y e R", we define

(2.13) Zx(y) £YXÖ Yj(y).
j

Then (p, Zx) £ (p, Yf Yj (x) p (x) for all p e V. This means that
j

Zx is the unique element of V representing the linear functional mapping p
into p (x) and, therefore, Zx is independent of the orthonormal basis we

chose. Since S° is a unitary transformation on V the functions whose
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values at j/eR" are Yj (u 1 y) also form an orthonormal basis of V.

Thus, by (2.13) and the fact that the definition of Z^ (y) is independent of
the basis we chose, Zu_lx (uy) Zx (y) for all u in SO (n). In particular,

Zx must be invariant under the action of any u in SO (n— 1). This

proves (i).
To show (ii) we let p be an invariant polynomial under the action of

SO (n — 1) and we write

k

V (*1, X2, xn) — p 00 — ^ %n
J'

Pj (£) '
J= 0

where pj is homogeneous of degree j in the n — 1 variables £ (xl9 x2, •••,

xn.J, If ueSO{n- l) and iCl x y (yl9 y2, yn) then *B.

Thus, by our identification of SO (n— 1) with a subgroup of SO («),

(yi,yi, •••> Jn-i) n w1 ç and

Z xkn~~JpjiOpW Z x)TJPi(u~l0 Z
j ~ 0 j=0 J 0

for all real numbers Consequently, pj(0 Pj(u~1 £) for all
£ 6R(b"1} and we SO (n — 1). But this clearly means that pj is a radial
function (i.e. it depends only on | ^ | (vi + ...+x^_1)1/2) since, if we are

given any two points £ and with | £ | | i] |, there exists a rotation u
such that rj w-1 On the other hand, pj being homogeneous of
degree j9 this means that we must have pj (£) Cj | £ |J Cj (.x\+...
+x2n_1)j/2, where Cj is the value of pj at any point on the surface of the

unit sphere In-2 { ^eR("_1); | £ | 1 }. Since pj is a polynomial
Cj must be zero when j is odd. Thus, after relabeling, we have shown
that

P(x)Z Ci xn~2J xl_
0^j^k/2

On the other hand, since p is harmonic

0 (Ap) (x) Z {<*ici+ßjCj-t )xkn~+ + xZi)'""1,
1 ^j^k!2

where a j 2j(n + 2j - 3) and ßj (k - 2y+ 1) (k - 2j + 2). Since ^ 0
for 1 S j S k/2 this means that

Cj=i-iyhh^hCo
cc1a2...ccj

L'Enseignement mathém., t. XIV, fasc. 2. 10
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for 1 Sj S k\2. This shows, therefore, that p (x) is c0 times the
polynomial

(2.14) 4+y (~iyßlß2'"ßj4-2J(xi + ...+xi1y
1 ^jSk/2 al a2 ••• aj

and (ii) is proved.

Corollary (2.15). The linear space spanned by the class of all polynomials

in k 0, 1, 2, restricted to the surface Tn_1 { x e R":
I x I 1 } of the unit sphere in R" is uniformly dense in the space C (Tn-1)
of continuous functions on Tn-i.

Proof It follows from the Weierstrass approximation theorem that the
linear space spanned by the class of all polymonials in ^(/c), k 0, 1,

restricted to is uniformly dense in C(In^f). But it follows from
theorem (2.12) that if p (x) is in then

p(x) h(x) + \x\2qx(x) + |x|4<?2(x) + + |x|21 qt(x)

where h e<yrk and qj e^(nk~2j\ 1 j ^ ^ k\2. If x e Tn_1? therefore,

p (x) h (x) + qt (x) + q2 (x) + + qt (x). That is, p is a (finite) sum
of elements of 0 ^ j ^ k. The corollary now follows immediately.

The harmonic homogeneous polynomials of degree k (that is, the

members of {nk)) are called the solid spherical harmonics of degree k.

Their restrictions to the surface of the unit sphere T„_i are called the

spherical harmonics of degree k (or, sometimes, the surface spherical
harmonics). If p (£) is such a restriction, because of the homogeneity, we

obtain the value of the original function at any point x | x | £ in Rn by
multiplying p (£) by | x \k. In view of this close relationship between the

spaces of solid and surface spherical harmonics of degree k we denote both
of them by J^f(nk\ It will be clear from the context which of the two

spaces 34?nk) is under discussion. Furthermore, we will systematically use

the Greek letters £, r\9 to denote points of Tn_1, while x, y, will continue

to denote the general points of R". The spherical harmonic Z5,{el„_l5
defined by (2.13) (which was shown to be independent of the choice of
orthonormal basis of Jf(nk)) is called the zonal harmonic with pole <J. It is

clear from our discussion that c0 Z1 (1) times the expression (2.14)

equals Zx (x).
The following theorem is a basic tool that will be used in the next

section in order to show how the spherical harmonics can be obtained from
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irreducible representations. Before stating it we observe that [| Zx ||

yj(Zl9 Zx) y]z1 (1) ak. This follows immediately from the fact
that Zx represents the linear functional mapping p eYTik) onto p (1); that
is, (p9 Zx) p (1). For, taking p Zl9 we then must have || Zx ||2

(Zl5 Zx) zx (1).

Theorem (2.16). Let { Yx, Y2, Ydk } be an orthonormal basis of jY(nk)

the space of surface spherical harmonics ofdegree k, such that Y1 a/ 1 Zv
Then, if (tfj-(u)), u e SO (n), is the matrix of Sk,n with respect to this basis,

we have

(2.17) Yj(ul) ak tn (u) VZ, (1) tn

forj 1, 2,..., dt.

Proof. If p e is orthogonal to Tx we obtain

0 (p, Yi) aj^1(p,Zj)In particular,

(0 /•(!) 0 /or i 2,3,...,^.
If v e »SO (n) then the matrix (/y (v)) of is given by

dk

(SkS Yj) (0 Yjiv'1Ö E 'y (») S(0> 1 ^ 7 ^ 4.
/ 1

Thus, putting £ 1 and using (i), we obtain

Yj(v~l1) tiy(w) 7, (1) ak (« \^j^dk.
Letting u v~l this equality reduces to relation (2.17) and the theorem
is proved.

It is not hard to evaluate the constant a\ Z, (1). In fact, let

«(*)=*î+ E -1)7' Plß2"-ßJ
(Xf

1 gjgk/2 0C1 a2 CCj

be the polynomial (2.14). We showed that Zt (1) q (x) Z, (x). Thus,

Z> (1) (Zj Z,) (alq,alq) — [Z, (l)]2
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This shows that a\ Zx (1) 1 / (<q, q). On the other hand, the inner
product (q, q) is easily evaluated once we observe, after an easy calculation,
that the polynomials xk~2j (x\ + x\ + + x2n~i)j are mutually orthogonal
and the square of their norm is oc1 a2 ocj / ß1 ß2 ••• ßj> Hence,

(2.18) aï21/Zj (1) 1 + X ßlß2"'ßj
l^j^k/2 <*1 0C2 OCj

where a j 2j (n + 2j — 3) and ßj — (k — 2j + 1) (k — 2j + 2). It can be

shown that the last expression equals

^ (2 j +- 2'

thus, we also have

j — 0 \J + n

k -1 2j + n — 2
(2-19) aï2I] " ' "

j o J + n — 2

In the next section we shall characterize those irreducible representations
of SO (n) that are equivalent to Sk,n. These will be the representations of
class 1 (to be defined in § 3). We shall show that the spaces spanned by
the first column of the matrix of these representations with respect to
certain orthonormal bases are the same whenever two representations are

equivalent. Consequently, we can define Yj9j «=*= 1,2, dk, by
formula (2.17) when {ttj (uj) is such a matrix and obtain the spaces 2tf{k)

directly from the general theory of representations of SO (;n).

§ 3. Representations of Class 1 and Spherical Harmonics

In the course of the proof of theorem (2.12) we showed that there was

precisely a one dimensional subspace of whose points invariant under
the action of Sk,n restricted to SO (n — 1). As we shall see, it is this property

l) When n 4, for example, a2 (7c +1) 2 k. For n 6, =6 (k+2) (A:+ 3) 2 k. The fact that
2

a£ Zj (1) ^ 1 can be shown without any calculation. Equation (2.13) defined a "zonal harmonic"

for any subspace of^k\ If, in this definition, we use the orthonormal basis {^^/(a) **}' H a 'I

we obtain (x • y)^. The value of this function at * 1 y is obviously 1. If, on the other hand,

we use an orthonormal basis that is a continuation of an orthonormal basis of we clearly
have ZX (1) ^ (1 • l)k 1.
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