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REPRESENTATIONS OF COMPACT GROUPS
AND SPHERICAL HARMONICS

by R. R. CorrMaN and Guido WEiss ')

To the memory of Jean Karamata®)

§ 1. INTRODUCTORY REMARKS

Special functions (in particular, spherical functions) associated with
compact groups have been introduced by many authors. See, for example,
E. Cartan [4], Dieudonné [5], Godement [6], Vilenkin [11], Weyl [12].
The principal motivation of these authors has been to extend classical
results. Our purpose, on the other hand, is to show how these classical
results can be obtained in simple and elegant ways by making use of the
basic tools of the theory of representations of compact groups. In the
usual treatments of the properties of special functions that we derive
(see, for example, Bateman et al. [1]) much use is made of the theory of
functions and other analytical tools. We do not use the theory of functions
at all. For that matter, very little else in analysis is used, and, given the
few basic facts of the theory of representations of compact groups listed
below, our development is of an elementary algebraic nature. We refer
the reader to the fourth chapter of Stein and Weiss [10] for a development
of some of these classical results that exploits, in a somewhat different way,
the action of the rotation group SO (1) on n-dimensional Euclidean
space R".

This article is of an expository nature. Probably, few of the results
obtained are new. Moreover, some of the methods that we use are known.
On the other hand, this treatment of spherical harmonics is not readily
available. Yet, it is not solely because of this last mentioned fact that
we feel this article should be published; three other reasons motivated our
efforts. First, the theory developed is especially elegant. Secondly, many
seemingly unrelated topics are brought together. For example, two

1) This work was supported by U. S. Army Contract DA-31-124-ARO(D)-58.
%) Le volume 15 (1969) sera entiérement dédié & la mémoire du Professeur J. Karamata.
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different inner products that are often used in the space of spherical har-
monics of degree k (to be defined later) are shown to be constant multiples
of each other (this is relation (3.17) of § 3). Perhaps, in this sense, we
introduce new material. Thirdly, this development can be of use as a
guide to those who want to study more abstract problems in the theory of
compact groups.

We would like to take this opportunity to thank Mrs. Mei Chen and
Mr. Edward Wilson who have read the manuscript and made several useful
suggestions.

Aside from the standard theorems in measure theory, we shall assume
that the reader is familiar with those facts that are usually associated with
the Peter-Weyl theorem. More precisely, we shall state without proof
theorems (1.1) and (1.3) below. We refer the reader to Pontriagin [7] or
Pukanszky [8] for these proofs.

Suppose G is a compact group. A representation of G is a continous
map, u — T (1), of G into the class of unitary or orthogonal ) operators
(depending on whether we are dealing with the complex or real case) on
a Hilbert space H that satisfies the relation 7 (vv) = T (1) T (v) for all u
and v in G. We shall sometimes write 7, instead of T (u).

L? (G) denotes the space of all complex valued functions fon G satisfying

fe |l fW)|*du <o,

where du is the element of Haar measure on G, which we assume to be
so normalized that [, du = 1. We adopt the usual convention of also
letting the symbol L? (G) denote the Hilbert space of all equivalence classes
of square integrable function on G, where two such functions are said to
be equivalent provided they are equal almost everywhere. When H = L? (G)
the mapping u — R,, where [R,f]1(v) = f(u"'v) is easily seen to be a
representation of G; it is called the (left) regular representation of G.
The function f, whose value at v is f(u~ " v) is called the (left) translate of
fbyu. Thus, R,f=f, for fe L> (G) and u in G.

If the representation T acts on the Hilbert space H, a subspace M < H
is said to be invariant under the action of Tif 7T,5s€ M for all ue G
whenever s belongs to M. It follows immediately from the facts that 7, is
unitary and that the adjoint, T',, of T, is T,_,, that M1, the orthogonal

1) In the usual definition of the notion of a representation the operators are merely assumed to be
bounded and invertible. We have defined what is called a unitary orthogonal representation of G. Since
we shall consider only such representations, our definition avoids the continuous repetition of the words
“ unitary ” and “ orthogonal ”.
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complement of M, is invariant whenever M is invariant. If {0} and H
are the only invariant subspaces, then the representation T is said to be
irreducible. A basic result in the theory of representations of compact
groups 1s

THEOREM (1.1). If the representation T, acting on the Hilbert space H,
is irreducible then H is finite dimensional.

Suppose { ey, €,, ..., ¢, } is an ortho-normal basis of the Hilbert space H
of dimension d-and L a linear transformation of A into itself. The matrix
A = (a;;) of L with respect to this basis is defined by the equations

d
Le; = Y aje

Jj=1

Jjo

thus, the i column of A consists of the coefficients needed to express Le; in
terms of the basis { e, e, ..., e, }. A* = (a;;) denotes the adjoint matrix
(the matrix of the adjoint transformation, L*, defined by the relation
(Ls, t) = (s, L*t) *) for all s, ¢ in H).
Thus, if L is unitary 44* = I = A*A, where 1 is the identity matrix.
A" = (a;;) denotes the transpose of 4 = (a;;) (in the real case 4" = A%*).
d

Finally, tr A is the trace of 4; thatis, r 4 = ) a;,.
=1

If T is an irreducible representation actingg on H, we can choose an
orthonormal basis of H, which must be finite by (1.1), and express 7" as a
unitary matrix (z;;) with respect to this basis. In order to avoid using too
much notation we will let the symbol T represent the matrix (;;) as well.
The mapping u — T (1) = (¢;; (1)) will then be called a (unitary) matrix
valued representation and the fact that multiplication is preserved under
this mapping can be expressed by the formula

(1.2) t; (o) = Y 1y (u)t; (V)
I—1

for all u,ve G. More generally, a matrix valued representation is a con-
tinuous mapping thE}t assigns to each u € G a unitary d X d matrix
T (u) = (t;; (w)) in such a way that (1.2) is satisfied. If C denotes the
complex number system and C? denotes the d-dimensional complex
Euclidean space { z = (z4, 25, ..., 2,): z;€C,j=1,2,..,d} with the usual
inner product z'w = z;w; + z,w, + * + z,w,, we also consider T (u)

1) Unless otherwise stated, the symbo! (s, ¢) denotes the inner product of s and r.
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as the unitary operator mapping z e C? into w = (w,, w,, ..., w,;), where
d

w; = Y t;z forj=1,2,..,d (that is, if we regard z and w as column
I=1

vectors, w is the matrix product 7 (u) z). It then follows from (1.2) that

u — T (u) is a representation of G acting on H = C* (In the real case we

replace C by R, the real number system, and C? by the real Euclidean

space RY).

Suppose T is a matrix valued representation and H ; is the (finite dimen-
sional) subspace of L? (G) spanned by the entries of the j* column of T.
It is an immediate consequence of (1.2) that H; is invariant under the
action of the left regular representation of G.

Two representations S and 7, acting on the Hilbert spaces H and K,
are said to be equivalent when there exists an invertible linear transforma-
tion L mapping H onto K such that 7, L = LS, for all # in G (equivalently,
L™ 'T,L =S, for all uin G). A system {7T*}, o€ o, of irreducible
representations of G is said to be complete if, given any irreducible repre-
sentation 7, there exists a unique index « such that 7"and 7% are equivalent.
Theorem (1.1), together with the following one, constitute a formulation
of the Peter-Weyl theorem:

TueorREM (1.3). If {T*} = {(t}}) }, o€ o, is a complete system of
irreducible matrix valued representations of the compact group G, then the
collection of functions \/ d, t;; is an orthonormal basis of L (G), where d, is
the dimension of the space H* on which T* acts.

If T is a representation of G then the function mapping u € G into
tr { T'(u) } = X (u) is called the character of T. It is clear that if T} and T,
are equivalent representations then the characters of T, and T, are equal;
that is, the character depends only on the equivalence class determined by
a representation of G. It is also clear from the orthogonality relations
that the character determines the equivalence class of a representation.

COROLLARY (1.4). Suppose {T*} = {(t{})}, ae A, is a complete
system of irreducible matrix valued representations of the compact group G,
f belongs to L? (G) and X* denotes the character of T, then the series

Yody Jof W) ™ Ndu = Y d, Jo f W) x*(vu™")du
aed aed

converges to £ (v) in the L* norm ).

1) It follows from elementary Hilbert space theory that only a countable number of the summands
can be non-zero and the order in which they are taken does not affect the L2 convergence of the above series.
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Proof. By theorem (1.3), the functions \/ Z t{; form an orthonormal
basis of L? (G). Thus,

(1.9 =3 % ).
aed \i,j=1

where ¢; = d, [/ () t2, (u) du and the convergence is in the L? norm.
If C* is the matrix (c;) and [T* (v)]' is the transpose of 7 (v), then

i ;15 () =tr { C*[T* ()]} = d, [ f)tr{T* (uj [T*(v)] }du.

i,j=1

Since 7% (v) is unitary and its inverse is T* (v~ ') we have [T* (v)]' = T* (v=1).
Thus,

d, [ f@tr {T*W)[T*@)] }du = d, [of @) tr { T*(u) T*(v™") } du
=d, [ef@tr{T (v ") }du = d, [¢f @) tr{T*(wu"")du

and the corollary is proved.

THEOREM (1.6). Suppose T = (t;;), 1 £1,j £ d, is an irreducible matrix
valued representation of G and H; < L? (G) is the subspace spanned by the
entries ty j, ty s ..., tg; of the i column of T. Then the restriction, R"Y, of
the left regular representation of G to H ; is an irreducible representation of G.
Moreover, RY) and R™ agre equivalent for 1 < j, k < d and each of these
representations is equivalent to the representation T on H whose value at
weGis T,=T, ;.

Proof. We have already observed that (1.2) implied that H ; is invariant
under the action of the left regular representation. To show that RY) is
irreducible we consider the standard orthonormal basis ¢; = (1, 0, ..., 0),
e, =(0,1,..,0),..,e;, = (0,0, ..., 1) of H= C? and define a linear trans-
formation, L, on H into H; by putting Le; = \/gz‘,-j, 1 <i<d From
the definition we see that T is the matrix valued representation having
coeflicients that are complex conjugates of the ones ocurring in 7. By (1.2)
we then have

(LT, e)(v) = L(Z ﬁu‘)) @) = /d Y t,;(u) 1)

d
= Jd ¥ t, @)1, (0) = Jdt; (") = (R Le) (v)
=1 '
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for all y,veGandi=1,2,..,d Thus, LT = RY L which shows that
each of the representations RY) are equivalent to T. The theorem now
follows immediately.t)

§ 2. THE CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS
OF SOME SPECIAL GROUPS

In this section we show how one can obtain irreducible representations
of some of the classical compact groups. In many cases we describe several
representations that are equivalent to each other. We shall see that often
one of the members of this equivalence class of representations has special
features that make the study of certain properties particularly easy.

If we are given two finite dimensional representations of a compact
group G that act on the Hilbert spaces H and K, we can obtain a third repre-
sentation of G by constructing the tensor product of H und K. The classical
definition of this concept is the following: We choose orthonormal bases
{ e, e, ...se, } and { f1, fo, ..., f, } of H and K, respectively, and we assign
to each of the m - n pairs (e;, f;) a “ product” e; ® f;, called the tensor
product of the elements e; and f;. We then obtain a new Hilbert space by
considering all the linear combinations

m,n

Z a;j (ei®fj) >

is.]=1

defining addition and scalar multiplication by letting

Z aij(ei®fj) + Z bij(ei®fj) = Z (aij+bij)(ei®fj)a
iy j=1 i, j=1 i, j=1

¢ Z 2;;(&®f) = Z ca; (e;®f)),

i,j=1 i,j=1

and the inner product by letting

(Z aij(ei®fj)9 Z bij(ei®fj)) = Z aijE’—i;'-
i, j—=1 g, fust i,j=1

This space is denoted by H ® K and is called the tensor product of H and K.
Itisclearthat {e; ® f;},1 £ i< m, 1 < j = n,is an orthonormal basis

1) We observe that L is an isometry. We will make use of this fact later in § 3.
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