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extension of yv. Let us now put </(v*, - X an ~ d>V Here £ (v) e
A A

e Cl (U7 (p3), F). Using the previous estimates and the fact that the bÀ

are finite we find that llîwlL <^ll<?(v>IL <^IUIL>-
A

Now we also have | X00. It follows that

113(v) lip < yh'i13((i) IU < 7/7' • £ 1131L
•

A

Finally we put in U*9 (p) :

3(1) z?ti(tiPy

r3(v)(t/p)v - Uv(t/p)v - zaYl(tiPy bA - «5(zÇY(tiPy)

A A A A

£ - v] - Z ax - ôy

Using the fact that the sum of the absolute values of the coefficients in the
A A

power series expansion of £((*j by (t/p) is smaller than y/y' • AT|| £ ||p and
A A A

that with respect to t]vis smaller than y'"* Z|| £ ||p we find: || £(1) ||p <
<yly' -K\\3IL>and h\l</"-^113 Hp and I!«a||p <^|| î IU- we

A ~ A A A
take the restriction to23(p) and now £ £(1) — rj e Zl (33 (p),F) is the desired

element. Of course we have to choose p4 and then p2 small enough, for
example let y'" < e/2 K and y < ey'ßK.

Main Theorem

A A
There exists p2 and a constant K such that if p < p2 and £ e Zl (II (p), F)

A A
with || ^ ||p < co then we can find au (£"(p)) and

Ci_1 (S (p),F)such that3 ^axbx + ffi(p)with||r\ y,and]|av||p <
<*||3||p-

Proof. We have one constant K from the smoothing theorem. Now we
find p2 with an e in the Approximation Lemma such that < 1/2. We

A A
shall use this p2 and prove the theorem here. We are given £0 £ e

A A ^
Z'(U(p),F) with II ^ ||p < oo. The Approximation Lemma gives £ x
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3 - £ flu tu - <5?1 on $ (p). Here e CI_1 (25 (p),F)and || ^ ||p <
A ~ A

< 8 I) £ ||p. Now e Zl (93 (p),F). The Smoothing Theorem gives ^ e

e Zl (1t (p),F) and (p)>F) such that ^ ^ + Srj1 on 93' (p). Here
A ~ A A

II t]1 ||p and y ^ ||p < AT|| ||p < l/2|| £,||p.Now we use instead of
A AAA A A A
£o as above and get: £2 + <5>y2 - £ a22 bA - <5y2. Here || £2||p

and || j/2 || < % || ||p < (i/2)2 || 3 ||p and || a22 |[p and || ||p < - || [|p.

A A AAA A

Inductively we get: £„ £„_!- £ a„xbA- 5yn+ Here || <ï„ ||p <

< 2~"IU IUI|l»i|p <2~"ll î IU and || «„a ||p and || ||p < 2_n+1 • ^|| J||p
A A

for« 1, 2, 3,... A summation is now possible. We get 0 £ — Yuanx^x ~~

rt,X
A A AAA- £ <5?» + £ <5>7„- We put =--= £ a«* 1 and the theorem

n

follows.
For the proof of the coherence the Main Theorem is needed in a weaker

and simpler form.

Main Theorem (*): There exists a positive n-tupel p2 < p0 and cross-
A

sections Si9..., SreT (En (p2),^(i) (F)) such that any 5 (£') eT(En(pf),
A

i//(j) (F)) with^ e H1 (X(p'), F) can be written over En (p) in the form S
n

Yuax with a i, e l(En (p)). Here p < p2 and p < p' < p0.
l
Proof. Define s*= i^(/) (bA | X(p2)). The cross-section S can beAAA A

written in the form S \j/^ (£') with e Zz (IF (p'), F). We put £ —
A A A
<F I U (p). Then || £ ||p < 00 and we have the representation £

A A A

Yja>+ $rh For the cohomology classes we get H, and for the

images S\E" (p), this gives S\E"(p))[/(l) (3) £ Sx.

The immediate consequence of this form of the Main Theorem is that
the stalk of (F) at the origin (and hence at every point of course) is

finitely generated. However this is not yet the full coherence of i/qz)(F).
Nevertheless, the Main Theorem above contains all that is essential, and the

rest of the proof is not difficult. We refer to [1, pp. 54-58], or to Knorr [2]
for details.
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