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extension of y,. Let us now put f(lv) = &5y — 2 a,,b; — 0y, Here f(v) €
eC (117 (ps3), F). Using the previous estlmates and the fact that the b,l
are finite we find that || ED by <Kl lloe < K1 €]l

Now we also have é(,,) | Xo = 0. It follows that
1 EE 1, <y 118G Ml <2l K1 EL,-
Finally we put in {I; (p):
D = 3EL 1oy =

= 2 p)' =2 71v (t/p)" — Za,,(t/p)’ bz — (2, (t/p)")
=¢—n—2a;b, —dy.
Using the fact that the sum of the absolute values of the coefﬁcients in the
power series expansmn of ﬁ((lvg by (t/p) is smal]er than yp/y’ - K H f ||, and

that with respect to 7, 1s smaller than y”’ K| 5 ||, we find: || é(” I, <
<9l - K| €[], and H all, <v" K|\ 2|, and ||a]l, <K|| €[], We
take the restriction to % (p) and now £ =M ne Z'(B(p),F)is the desired

element. Of course we have to choose p, and then p, small enough, for
example let y"" < ¢/2 K and y < ¢)’/2 K.

MAIN THEOREM

There exists p, and a constant K such that if p < p, and 2 eZ' (ﬁ (p), F)
with H é ||, < oo then we can find ay, ..., a, € I(E" (p)) and 5 e
e (‘B (p), F) such thaté = Za,lb,l + énon%(p)wnh[[n[lpand][a |, <

< K|l

Proof. We have one constant K from the smoothing theorem. Now we
find p, with an ¢ in the Approximation Lemma such that ¢ - K < 1/2. We

A

shall use this p, and prove the theorem here. We are given & = ¢ €

Z' (U (p), F) with || £||, < co. The Approximation Lemma gives El—:—
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= 5 - Z aub/l - bh on % (p). Here ')’1E ol 1(% (), F)and” 51 Hp <
< & H é ||, Now 51 e Z (Q} (p), F). The Smoothlng Theorem glves 61

eZ! (11 (p),F) and 171 g =k (513 (p),F) such that 61 = 51 +5;1 on% (p). Here
| 7y ]|, and || &, ]|, <K|Ig1 Hp 1 ]] f ||,- Now we use 51 1nstead of

¢y as above and get: &, = 51 - 5712 Zazz ba - 5)’2- Here ” fz “p
and ||, || < % || & [l, < 47 || €|, and || azs ||, and || 3, ||, < ~—H )

Inductively we get: 2,,:2,1_1 — > a, b,x 5yn+511,,
<27 ¢ 27 || & ||, and || .||, and || 3, ]|, < 27"+ KHpr

forn =1,2,3,... A summation is now possible. We get 0 = é — ). a, b,l —
n,A

— 207+ 2 My We put a; = ) uss 1 = ), (=7,+n,) and the theorem

follows.
For the proof of the coherence the Main Theorem is needed in a weaker
and simpler form.

o llml, <

Main Theorem (*): There exists a positive n-tupel p, < p, and cross-
sections S, ..., S, €I (E" (p2), ¥ (1) (F)) such that any S= v, (8") eI (E"(p"),
Yoy () with & e H' (X (p’), F) can be written over E” (p) in the form S =

=Y a; S;withay, ..., a, e I(E" (p)). Here p < p, and p < p’ < p,.
~ 72 2T
Proof. Define S, =y, (b, | X (pz)) The cross- section S can be

Written in the form S =y, (f)W]thf eZ’(lI’ (p), F). We put
illl(p) Then 1 5 |, < oo and we have the representation ¢ =

> D>

=Y a, ]E),1 + 57; For the cohomology classes we get E = > a, b, and for the

images S| E" (p), this gives S|E" (p) = ¥y (?,‘) =Y a, S,.

The immediate consequence of this form of the Main Theorem is that
the stalk of y;, (F) at the origin (and hence at every point of course) is
finitely generated. However this is not yet the full coherence of ¥, (F).
Nevertheless, the Main Theorem above contains all that is essential, and the
rest of the proof is not difficult. We refer to [1, pp. 54-58], or to Knorr [2]
for details.
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