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APPROXIMATION

We use positive n-tuples p, ... with p < p, < p; < p, < p; and p =
= 9P, P2 == Y01, P3 = ¥'P1> Pa = 7 p1. The n-tuple p; is defined as in

the smoothing theorem.
Definition :  Hi = { Ee H (X,, F|Xo) such that there exists U =

= U(0) in E" with e H' (y "' (U),F) and & | X, == & }. Serre’s theorem
gives dimg Hx < dim¢e H' (X, F|X,) < co. In the following discussion we

are given by, ..., b, in Z' (W (p,), F) such that b, ] Xos ... b,[ X, constitute
a base of the complex vector space H+. For this to be possible, p, has to be

chosen small enough. Here i’ is a Stein covering of X (p,) and defined as in
the smoothing theorem. We also assume that we are given a sequence of
measure coverings as there. Further we construct the sequence so that
there are still sufficiently many measure coverings in between B and 2.
These are denoted by .. We have U > U; » U, > ... > V. The n-tupel
p; is also fixed from now on and K always denotes (possibly different)
constants.

Approxinﬂation Lemma Let ¢ > O Then we can find p, such that:
If p < P2 and fe zZ! (11 (p), F) with || cf |, < oo (the norm is taken with
respect to- 111 (p)), then there exist al, .., € I(E" (p)) and 17 eC!™! (%(p), F)

r A A

suchthatg = ¢ — > a;b; — dnon %(p).Here f € Z’(‘B (p),F) and || f |, <
1
<cel|&||,and || a, ||, || n I, <K || &||,- K is a fixed constant.

Proof. We shall first prove some results which are needed later on.
Let SeF( 0ney (P F). Choose € { tg, ..., t; }. Now (U(%g*...q% c U

LO-..Ll
because U, < U. The operations are always defined with respect to p;.
We can now restrict S to (U (1)*_ .. (p). In the chart #°, we can write S =

= > a,(t/p)’. Here a,eql (U (1)*‘ ). Now the a, are extended constantly

and we get elements av el (U4)..),F) Letus put S, = q, | U(z)*_“q. We

claim that || S, ||,, < K]|| S ||,- For obviously || S ||, > |a, (U%)"...)|and
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we can use the Theorem I'to prove that|| S, 11,, <K || a,| (U .). (e || .=
~K|a,W )| < K]]S, QED. |
Let S, be defined using some other " €{ i, ...t;}. Then S, — S, €

el (U(z)*. » F). We claim that s, =S, Hp4 < Ky || S|,
o0 s—1
Proof. Define o, = Y a,(t/p)* and B, = > a,(t/p)* over

[2] =s |2]=0 ’ /
(U (1)*_ D (p). We do the same for v/ respectively and obtain o, and f over

(U(fg*'_'tl)t, (p). For the restrictions to (}(ng*...q we see that o, — o, =
~ (B~ B)). Hence we get ||, — o ||, < KO || oa—at ||, = K| o
B, < KO 1Bl K G IBlL, < K G LIA, <
<K@ ("' *|| §]|,- Here the norms are defined with respect to U} ot}

except || ||*and || S|, which are defined with respect to U})" . Now we look
at the difference (S, — S.) t*/p’ on (U(fg*_“”)u with ]v] =5, UE {1g,...t;}, and the
power series development with respect to W,. There is one term of order
s which is equal to the corresponding term of o, — o.. Therefore its norm is
< K@) (p) s H SHp. Moreover we have H S, (t/p)' = S. (t/p)" H "
< (")"* K || S||, where the first norm is defined with respect to U(f’o)*__, .-

For the sum ) of terms of higher order than s in the power series of (S, —
—S,) t/p"* we therefore get: || ) Hp <GPS K| S|, Hence we get

<y""-K|| S|, This proves our statement. We see that X is
independent of p, and S. The number y"" depends on p,only,soy”" K gets

_—
==

very small if we make p, very small.

Let ie Z! (11 (p), F) with é {E .y }- Choose t =1 (i, .oy 1)) @S
a function of the unordered (/4-1)-tuple. We now fix 1, ..., 1; and write

§=2¢,,..,- Weapply to S the method described above and obtain f(” =
= §,. We do this now for every i, ..., 1, and conmderém = { f%)m”_}
as an element of C' (i\I; (p,), F). Of course E(V) depends on the choice of
L= (19 1) here. Now we see that | gm e < 11200 Iy < K[ 1],

We also wish to estimate 55@) Because é R A (11 (p), F) we can use the

preliminary result on v and ' to obtain || 5f(v) o, < Ky || é -
We shall also need another result:
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]nduction Lemma : There exists nv e C! (II4 (p3), F) such that 5;7v =
550) Hp4’

Proof. The proof uses the assumption that v, (F) is coherent.
Because the coherence of direct images is proved by downward induction
on /, this assumption can be made. Moreover it is assumed that the main

5f(v) on 114 (p3) and || ’7v ”ps < K|

theorem is proved for dimension / - 1 already. Let us now put o = ¢,y €

e B! (U; (p,), F) and n, = Be C' (U, (p5), F). We have to prove the
existence of . We may assume that p, is so small that the main theorem
is valid for p < p, in the case of dimension / -+ 1. So there are cocycles
Wy, oy @, € ZTH (U (py), F) such that o=) C,w;+ oy, where C,e

e I(E"(p,)) and ne C'(Uy (p,), F). We have to assume that between U,
and I, there are very many measure coverings. The cross-sections ¥ ; 4 1, (®;)
give a homomorphism 70 — ;. ,(F) over E" (p,). Because Y4, (F)
is coherent the kernel 4" is coherent again. Over E” (p') with p; < p’ < p,
we find an epimorphism p0® — A". Denote by ny, ..., n, the images of the unit
cross-sections in p@. Write n; = (e;;, ,e;,) as an r-tupel of holomorphic

functions. The image of n, in I' (E" (p"), ¥ (1+1, B) is Y141y ( D, €1, @)
u=1

and zero. We may choose p, and then p; and p’ very small
Then it follows thatn; =) e, w, is a coboundary. If p; < p” < p’

there are cochains 7, € C' (U, (o), F) such that 61, = n,. Now (Cy, ..., C,) €

eI'(E"(p,), /). By the methods of sheaf theory we can lift this cross-

section to p@. Using a “ Banach open mapping theorem ” we see that the

map I (E"(p"), p0) — I" (E" (p), /") is open. This means here that we can

find holomorphic functions a, over E" (p;) such that C, =) a,e,;, and

H a; Hp3 < K max H Cu ”P' < Kmfx ” Cu Hp4' We get Z Cu P :’Z a5 €@y
u

= Y a;n, = (Y a,n,). This leads to o | C™*1 (U, (p3)) = 6 1+ Y axny).
The estimates requlred obv1ously hold. Q E.D.
Let us now put f(v) = é(v) n,€2Z (11 (p3), F). We can write f(v) | Xo =

=Y a,; b,1| X, + oy, over U.. Here a,; are complex numbers and y, €
e C'"'(Ug, F | X;). Cartan’s theorem and the result after that give the

estimates | a,,| < K[| &) [,y < K[ €[], and [[ 7, [|,; < K] &6y
< K|| ¢ ||, Here y,e C'~' (U5 (p3), F) has been obtained by a constant
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extension of y,. Let us now put f(lv) = &5y — 2 a,,b; — 0y, Here f(v) €
eC (117 (ps3), F). Using the previous estlmates and the fact that the b,l
are finite we find that || ED by <Kl lloe < K1 €]l

Now we also have é(,,) | Xo = 0. It follows that
1 EE 1, <y 118G Ml <2l K1 EL,-
Finally we put in {I; (p):
D = 3EL 1oy =

= 2 p)' =2 71v (t/p)" — Za,,(t/p)’ bz — (2, (t/p)")
=¢—n—2a;b, —dy.
Using the fact that the sum of the absolute values of the coefﬁcients in the
power series expansmn of ﬁ((lvg by (t/p) is smal]er than yp/y’ - K H f ||, and

that with respect to 7, 1s smaller than y”’ K| 5 ||, we find: || é(” I, <
<9l - K| €[], and H all, <v" K|\ 2|, and ||a]l, <K|| €[], We
take the restriction to % (p) and now £ =M ne Z'(B(p),F)is the desired

element. Of course we have to choose p, and then p, small enough, for
example let y"" < ¢/2 K and y < ¢)’/2 K.

MAIN THEOREM

There exists p, and a constant K such that if p < p, and 2 eZ' (ﬁ (p), F)
with H é ||, < oo then we can find ay, ..., a, € I(E" (p)) and 5 e
e (‘B (p), F) such thaté = Za,lb,l + énon%(p)wnh[[n[lpand][a |, <

< K|l

Proof. We have one constant K from the smoothing theorem. Now we
find p, with an ¢ in the Approximation Lemma such that ¢ - K < 1/2. We

A

shall use this p, and prove the theorem here. We are given & = ¢ €

Z' (U (p), F) with || £||, < co. The Approximation Lemma gives El—:—




	Approximation

