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Approximation

We use positive /z-tuples p, with p < p2 < p3 < p4 < p1 and p
— y"pu p2 — ypl, P3 — y'Pu Pa y"Pu The zz-tuple p1 is defined as in
the smoothing theorem.

Definition: Hi — { £ e Hl (X0, F\X0) such that there exists U

U (0) in En with £ e H1 (U), F) and £ | X0 Ç }. Serre's theorem
gives dimc H1* < dimc H1 (X0, F\X0) < oo. In the following discussion we

A A A A A

are given bl5 br in Zl (IT (p4), F) such that bx X0, br | X0 constitute
a base of the complex vector space Hi. For this to be possible, p4 has to be

A
chosen small enough. Here IT is a Stein covering of X (pfi and defined as in
the smoothing theorem. We also assume that we are given a sequence of
measure coverings as there. Further we construct the sequence so that
there are still sufficiently many measure coverings in between 33 and H.

These are denoted by U*. We have II > Hi P- U2 !> I> 33. The zz-tupel

p3 is also fixed from now on and K always denotes (possibly different)
constants.

Approximation Lemma: Let s > 0. Then we can find p2 such that:
A A A

If p < p2 and Ç e Zl (H (p), F) with || £ ||p < go (the norm is taken with
A A A

respect to Hi (p)), then there exist au ar e I(En (p)) and r\ e Cl~x (33(p), F)
^ A ^ A A A ~ A ~

suchthat £ £—<5>?on 33(p).Here e Z'(33 (p),F) and || £ ||p <
l

A A A

< s|| Ç ||p and || av Hp, || r]||p< K||£ ||p. is a fixed constant.

Proof. We shall first prove some results which are needed later on.

Let SeT Choose i e { i0,...,i, }. Now <=

because Hi* <g U. The operations are always defined with respect to pt.
We can now restrict S to (p). In the chart iVl we can write S

Zav(t/py. Here av e qI(U(U.A). Now the av are extended constantly
A A A

and we get elements avefF). Let us put av | UpJ_ We

claim that || Sv ||Pi < £ || S ||p. For obviously || ||„ > | av | and
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we can use the Theorem I to prove that 11 Sv 11
P1

=^ia>(c/(:0),...1()i < *II siu Q-e-d-

Let S'v be defined using some other i e { l0, it }. Then Sv — Sve

eT(t'f0r....r F). We claim that || Sv - S'v ||P4 < || ||p.

oo 5—1

Proof. Define as £ aft/pY and ßs £ cift/p)2 over
m=5

k

I A I=o
(p)- We do the same for i respectively and obtain and ß's over

A

(p). For the restrictions to U(2^\ iLI we see that as — as

- (ßs-ß's)-Hence we get ||<xs - of ||P4 <||||Pi X(/")s||

<K(y'")s (y")1-51| S\\p. Here the norms are defined with respect to L/^
I except I y* and || S |\p which are defined with respect to ...H- Now we look

at the difference (Sv-Sv) tv/pv on (U(3L^^H)ß with | vj s, pe and the

power series development with respect to Wß. There is one term of order
s which is equal to the corresponding term of as — a's. Therefore its norm is

<K(y,f,)s. (y"Y~s ||S||p. Moreover we have || Sv (t/p)v - S'v (t/p)v ||Pl <
< (y")-s-i£|| S\\p where the first norm is defined with respect to U(3q*...

H>

For the sum £ of terms of higher order than s in the power series of (Sv —

-S'v) tv/pv we therefore get: || £ jj^ < (y'")54"1 (y")~s,^|| S ||p. Hence we get

|| (Sv — Sv) j|P4 < y'"- K\\ S||p. This proves our statement. We see that K is

independent of p4 and S. The number y'" depends on p4 only, so y'"-Kgets
very small if we make p4 very small.

Let leZ1 (U (p), F) with % { îl0...H }• Choose i i (l0, t|) as

a function of the unordered (/+l)-tuple. We now fix i0, il and write
A A

S aPP!y to $ the method described above and obtain YlVq...h
A A

Sv.Wedo this now for every i0,i, and consider £(v) {
t }

A A
as an element of Cl (U2* (p4), F). Of course £(v) depends on the choice of

t i (t0 11)here.Now we see that || £(v) ||P4 < Jj £(v) ||pi < |j i ||p.
A A A

We also wish to estimate <5£(v). Because ^eZ'(ll (p), F) we can use the
A A

preliminary result on iandi'toobtain || || < Ky'" || £ ||p.

We shall also need another result:
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A A A
Induction Lemma : There exists r\v g Cl (tt4 (p3), F) such that örjv

S{(y) on H4 (p3) and || r\y||P3 <^|| ÔÇ(y) ||P4.

Proof. The proof uses the assumption that \J/il + 1)(¥) is coherent.
Because the coherence of direct images is proved by downward induction
on /, this assumption can be made. Moreover it is assumed that the main

A
theorem is proved for dimension / + 1 already. Let us now put a c)£(v) e

e Bl + 1
(U2 (pf), F) and rjv ß e Cl (U4 (p3), F). We have to prove the

existence of ß. We may assume that p4 is so small that the main theorem
is valid for p < p4 in the case of dimension / + 1. So there are cocycles

A

ca1? œr e Zl+1 (U (p4), F) such that a £ Cx cox + örj, where Cx g
A A

el(En(pfj) and rj e Cl (U4 (p4), F). We have to assume that between IX4

and U2 there are very many measure coverings. The cross-sections 1} (cox)

give a homomorphism rO -> ^(/+1) (F) over En (p4). Because 0r(^ + 1)(F)
is coherent the kernel yL is coherent again. Over En (p') with p3 < p' < p4
we find an epimorphism p(P -> yL. Denote by wl5..., the images of the unit
cross-sections in p(9. Write nx (exl, ^ eXr) as an r-tupel of holomorphic

r

functions. The image of nxinT E"(//),i (F)) is &0+1) X <»„)
jU= 1

and zero. We may choose p2 and then p3 and p' very small.
A

Then it follows that nx £ ^ a coboundary. If p3 < p" < p'
A A

there are cochains r\x e Cl (U4 (p")3 F) such that 5r\x — nx. Now (Cl5 Cr) g

g T (jF" (p4), By the methods of sheaf theory we can lift this cross-
section to p(9. Using a " Banach open mapping theorem " we see that the

map r{En (p')9pO) -> r (En (p'),^U) is open. This means here that we can
find holomorphic functions ax over En (p3) such that and

II ||P3 < Kmax || C„ ||p. < Kmax|| C„ ||P4. We get X Cp ©„ X aA
ß ß

X flA «A <5 (XßA 1a)- This leads to ot | C,+1 (U4 (p3)) 5 (//+X°a 1a)-

The estimates required obviously hold. Q.E.D.
A A A A A

Let us now put £(*} £(v) — rjve Zl (U4 (p3), F). We can write £(*} | U0 —
A

]T h2 I over Ue- Here avA are complex numbers and yv g

g C1'1 (VLß, F I Xq). Cartan's theorem and the result after that give the
A A A A

estimates | avX| < K\\||P3< AT |[ Ç||p and || yv ||P3 < AT || £(*> ||P3 <AAA< A'U £ ||p. Here yv e Ci_1 (H7* (p3), F) has been obtained by a constant
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A A
^

A A A

extension of yv. Let us now put </(v*, - X an ~ d>V Here £ (v) e
A A

e Cl (U7 (p3), F). Using the previous estimates and the fact that the bÀ

are finite we find that llîwlL <^ll<?(v>IL <^IUIL>-
A

Now we also have | X00. It follows that

113(v) lip < yh'i13((i) IU < 7/7' • £ 1131L
•

A

Finally we put in U*9 (p) :

3(1) z?ti(tiPy

r3(v)(t/p)v - Uv(t/p)v - zaYl(tiPy bA - «5(zÇY(tiPy)

A A A A

£ - v] - Z ax - ôy

Using the fact that the sum of the absolute values of the coefficients in the
A A

power series expansion of £((*j by (t/p) is smaller than y/y' • AT|| £ ||p and
A A A

that with respect to t]vis smaller than y'"* Z|| £ ||p we find: || £(1) ||p <
<yly' -K\\3IL>and h\l</"-^113 Hp and I!«a||p <^|| î IU- we

A ~ A A A
take the restriction to23(p) and now £ £(1) — rj e Zl (33 (p),F) is the desired

element. Of course we have to choose p4 and then p2 small enough, for
example let y'" < e/2 K and y < ey'ßK.

Main Theorem

A A
There exists p2 and a constant K such that if p < p2 and £ e Zl (II (p), F)

A A
with || ^ ||p < co then we can find au (£"(p)) and

Ci_1 (S (p),F)such that3 ^axbx + ffi(p)with||r\ y,and]|av||p <
<*||3||p-

Proof. We have one constant K from the smoothing theorem. Now we
find p2 with an e in the Approximation Lemma such that < 1/2. We

A A
shall use this p2 and prove the theorem here. We are given £0 £ e

A A ^
Z'(U(p),F) with II ^ ||p < oo. The Approximation Lemma gives £ x
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