

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 14 (1968)
Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE COHERENCE OF DIRECT IMAGES
Autor: Grauert, H.
Kapitel: Smoothing
DOI: <https://doi.org/10.5169/seals-42345>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 08.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

The set $G^* \subset G$ is open and $R^{**} = \{V_1, \dots, V_{i^*}\}$ an open covering of G^* such that $V_i \subset \subset U_i$ for $i \in \{1, \dots, i^*\}$. We have:

Cartan's Theorem. There exists a constant K such that if $\xi \in Z^l(R^*, q\mathcal{O})$ then $\xi|_{R^{**}} = \delta\eta$ where $\eta \in C^{l-1}(R^{**}, q\mathcal{O})$ and $\|\eta\| \leq K\|\xi\|$ for $l \geq 1$.

This is a simple consequence of Theorem B and Banach's open mapping theorem.

Now we apply Cartan's theorem. We keep the notations as above. Let $\hat{G} = G \times E^n(\rho)$ and put $\hat{R}^* = \{U_i \times E^n(\rho)\}$. Now \hat{R}^* is a Stein covering of \hat{G} . Let $\hat{G}^* = G^* \times E^n(\rho)$ and $\hat{R}^{**} = \{V_i \times E^n(\rho)\}$. Let $\hat{\xi} \in Z^l(\hat{R}^*, q\mathcal{O})$ and write $\hat{\xi} = \sum \xi_{(v)}(t/\rho)^v$ with $\xi_{(v)} \in Z^l(R^*, q\mathcal{O})$. We assume $\|\hat{\xi}\|_\rho = \sup_v \|\xi_{(v)}\| < \infty$. Now Cartan's theorem gives $\xi_{(v)}|_{R^{**}} = \delta\eta_v$ with $\eta_v \in C^{l-1}(R^{**}, q\mathcal{O})$ and $\|\eta_v\| \leq K\|\xi_{(v)}\| < \infty$. It follows that $\hat{\eta} = \sum \eta_v(t/\rho)^v$ is well defined in $C^{l-1}(\hat{R}^{**}, q\mathcal{O})$ and by definition we have $\|\hat{\eta}\|_\rho \leq K\|\hat{\xi}\|_\rho$.

SMOOTHING

We are given a sequence of admissible refinements of measure coverings in $X(\rho_1)$. Here $\rho_1 < \rho_0 = \min \rho_i$ as usual. Let l be a fixed integer ≥ 1 . We are given $\mathfrak{V}^* \ll \mathfrak{V}' = \mathfrak{V}_{3l} \ll \mathfrak{V}_{3l-1} \ll \dots \ll \mathfrak{V}_1 \ll \mathfrak{V}_0 \ll \mathfrak{V} \ll \mathfrak{U}^* \ll \mathfrak{U} = \mathfrak{U}_{3l} \ll \dots \ll \mathfrak{U}_0 \ll \mathfrak{U}'$. Here it is also required that $(\mathfrak{V}_{v+1}, \mathfrak{U}_{v+1}) \ll (\mathfrak{V}_v, \mathfrak{U}_v)$; $(\mathfrak{V}^*, \mathfrak{U}^*) \ll \ll (\mathfrak{V}', \mathfrak{U})$ and $(\mathfrak{V}_0, \mathfrak{U}_0) \ll (\mathfrak{V}, \mathfrak{U}')$. These extra conditions mean: 1) $\hat{U}_{i_0 \dots i_k}^{(v+1)} \subset \hat{V}_{i_0 \dots i_l}^{(v+1)} \dots \subset (U_{i_0 \dots i_k}^{(v)} \cap V_{i_0 \dots i_l}^{(v)})_i$ for each $i \in \{i_0, \dots, i_k\}$ and 2) $(U_{i_0 \dots i_k}^{(v+1)} \cap V_{i_0 \dots i_l}^{(v+1)})_j \subset (U_{i_0 \dots i_k}^{(v)} \cap V_{i_0 \dots i_l}^{(v)})_i$ for all $i, j \in \{i_0, \dots, i_k, i_0, \dots, i_l\}$. Recall that all operations are done with respect to ρ_1 . Let us put $\hat{R}_{i_0 \dots i_k, 0 \dots i_k}^{(v)} = \hat{U}_{i_0 \dots i_k}^{(v)} \cap \hat{V}_{i_0 \dots i_k}^{(v)}$. We consider elements $\xi_{i_0 \dots i_k, i_0 \dots i_k} \in \hat{\Gamma}(\hat{R}_{i_0 \dots i_k, i_0 \dots i_k}^{(v)}, \mathbf{F})$. Now we take a full collection $\hat{\xi} = \{\hat{\xi}_{i_0 \dots i_k, i_0 \dots i_k}\}$ of such elements which is anticommutative in $\{i_0, \dots, i_k\}$ and $\{i_0, \dots, i_k\}$. In this way we get a double complex $C_v^{k, \kappa}$. Here $\delta : C_v^{k, \kappa} \rightarrow C_v^{k+1, \kappa}$ and $\partial : C_v^{k, \kappa} \rightarrow C_v^{k, \kappa+1}$ are the usual coboundary operators.

NORM IN $C_v^{k, \kappa}$: Let $\hat{\xi} \in C_v^{k, \kappa}$; we put

$\|\hat{\xi}\|_\rho = \max_{i, (i_0, \dots, i_k, \iota_0, \dots, \iota_k)} \{ \|\hat{\xi}_{i_0 \dots i_k \iota_0 \dots \iota_k}\| (R_{i_0 \dots i_k \iota_0 \dots \iota_k}^{(v+1)})_i(\rho) \|_i \text{ with } i \in \{i_0, \dots, i_k\} \}$. Here $\rho \geq \rho_1$ and $R_{i_0 \dots i_k, \iota_0 \dots \iota_k}^{(v+1)} = U_{i_0 \dots i_k}^{(v+1)} \cap V_{\iota_0 \dots \iota_k}^{(v+1)}$ and $\|\cdot\|_i$ is taken with respect to the chart \mathcal{W}_i as usual.

SMOOTHING LEMMA: Let $\kappa > 0$. There exists a constant K such that: If $\hat{\xi} \in C_v^{k, \kappa}$ with $\partial \hat{\xi} = 0$ and $\|\hat{\xi}\|_\rho < \infty$ then we can find $\hat{\eta} \in C_{v+3}^{k, \kappa-1}$ such that $\hat{\xi} \in C_{v+3}^{k, \kappa} = \partial \hat{\eta}$ and $\|\hat{\eta}\|_\rho \leq K \|\hat{\xi}\|_\rho$. Here $\rho \leq \rho_2 = \gamma \rho_1$ with $0 < \gamma < 1$ and K depends only on ρ_2 .

Proof. Let us fix i_0, \dots, i_k in the following discussion. Let $G = U_{i_0 \dots i_k}^{(v+1)}$ and put $\hat{G} = (G)_i(\rho_1)$ for some $i \in \{i_0, \dots, i_k\}$ which is also fixed now. Now G is Stein in X_0 and \hat{G} is Stein in X . We put $R^* = G \cap \mathfrak{B}_{v+1}$ which is a Stein covering of G . Also $\hat{R}^* = \{(G \cap V_{\iota_0}^{(v+1)})_i(\rho_1)\}_{i=1, \dots, i^*}$ is a Stein covering of \hat{G} . Let $\hat{\xi} = \{\hat{\xi}_{i_0 \dots i_k \iota_0 \dots \iota_k}\}$. Now we look at the elements of $\{\hat{\xi}_{i_0 \dots i_k \iota_0 \dots \iota_k}\} = \hat{\xi}_{i_0 \dots i_k} \in Z^\kappa(\hat{R}^*, \mathbf{F})$. Here i_0, \dots, i_k is fixed as above. We get a cocycle because we have assumed that $\partial \hat{\xi} = 0$. More precisely we have considered the restriction of $\hat{\xi}_{i_0 \dots i_k, \iota_0 \dots \iota_k}$ to \hat{R}^* . We must verify that this restriction is possible.

Verification: By definition of $Z^\kappa(\hat{R}^*, \mathbf{F})$ we have to look at sets of the following type: (these are the sets where the cross-sections are defined) $(G \cap V_{\iota_0}^{(v+1)})_i \cap \dots \cap (G \cap V_{\iota_k}^{(v+1)})_i = (G \cap V_{\iota_0 \dots \iota_k}^{(v+1)})_i = (R_{i_0 \dots i_k \iota_0 \dots \iota_k}^{(v+1)})_i$. Now by 2) we have $(R_{i_0 \dots i_k \iota_0 \dots \iota_k}^{(v+1)})_i \subset \bigcap_j (R_{i_0 \dots i_k \iota_0 \dots \iota_k}^{(v)})_j \subset (U_{i_0}^{(v)})_{i_0} \cap \dots \cap (V_{\iota_k}^{(v)})_{\iota_k} = \hat{R}_{i_0 \dots i_k \iota_0 \dots \iota_k}^{(v)}$. Q.E.D.

Now we put $G^* = U_{i_0 \dots i_k}^{(v+2)} \subset G$. We let $\hat{R}^{**} = \{(G^* \cap V_{\iota}^{(v+2)})_i\}_{i=1, \dots, i^*}$. The system \hat{R}^{**} is a Stein covering of $(G^*)_i$. We are in a good position now. For we are given $\hat{\xi}_{i_0 \dots i_k} \in Z^\kappa(\hat{R}^*, \mathbf{F})$. Here \hat{R}^* is a Stein covering of \hat{G} and \hat{G} is a Stein manifold. We are working in the chart \mathcal{W}_i where the usual identifications are used. Hence we arrive at the following situation: G is a Stein manifold with a Stein covering $R^* = \mathfrak{B}_{v+1} \cap G$. Also $G^* \subset G$ and $R^{**} = \mathfrak{B}_{v+2} \cap G^*$ is a Stein covering of G^* such that $R^{**} \subset R^*$. The cocycle $\hat{\xi}_{i_0 \dots i_k}$ is now considered as an element of $Z^\kappa(\hat{R}^*, q\mathcal{O})$ which

we simply call $\hat{\xi}_{i_0 \dots i_k}$ again. Now we apply the result after Cartan's theorem. Hence we can find a constant K such that for every $\rho \leq \rho_2$ we get $\eta \in C^{k-1}(\hat{R}^{**}, q\mathcal{O})$ and $\|\eta\|_\rho \leq K \|\hat{\xi}_{i_0 \dots i_k}\|_\rho$ with $\partial\eta = \hat{\xi}_{i_0 \dots i_k}$. But this means precisely that we can find $\hat{\eta}_{i_0 \dots i_k} \in C^{k-1}(\hat{R}^{**}(\rho), \mathbf{F})$ such that $\|\hat{\eta}_{i_0 \dots i_k}\|_{i, \rho} \leq K \|\hat{\xi}_{i_0 \dots i_k}\|_{i, \rho}$ with $\hat{\xi}_{i_0 \dots i_k} = \partial\hat{\eta}_{i_0 \dots i_k}$. We have only constructed $\hat{\eta}_{i_0 \dots i_k}$ using a fixed $i \in \{i_0, \dots, i_k\}$. Now we must let (i_0, \dots, i_k) vary. For each (i_0, \dots, i_k) we choose some i which only depends on the unordered $(k+1)$ -tupel (i_0, \dots, i_k) and construct an element $\hat{\eta}_{i_0 \dots i_k}$ as above. Now we can restrict everything to $C_{v+3}^{k, k-1}$.

Verification: Consider a set where cross-sections over $C_{v+3}^{k, k-1}$ have to be defined, i.e. a set $\hat{U}_{i_0 \dots i_k}^{(v+3)} \cap \hat{V}_{i_0 \dots i_k}^{(v+3)}$. But by 1) follows $\hat{U}_{i_0 \dots i_k}^{(v+3)} \cap \hat{V}_{i_0 \dots i_k}^{(v+3)} \subset (R_{i_0 \dots i_k, i_0 \dots i_k}^{(v+2)})_i$ for each $i \in \{i_0, \dots, i_k\}$. This inclusion shows that we get a well defined element $\hat{\eta} \in C_{v+3}^{k, k-1}$ by restricting the elements $\hat{\eta}_{i_0 \dots i_k}$ to $C_{v+3}^{k, k-1}$. We find that $\hat{\xi} \mid C_{v+3}^{k, k} = \hat{\eta}$ now. The norm inequalities are not obvious, but recalling how $\hat{\eta}$ is constructed here it is seen that we can apply Theorem I to obtain the required estimate.

SMOOTHING THEOREM. There exists a constant K such that: If $\hat{\xi} \in Z^l(\hat{\mathfrak{B}}(\rho), \mathbf{F})$ with $\|\hat{\xi}\|_\rho < \infty$ then we can find $\hat{\xi}^* \in Z^l(\hat{\mathfrak{U}}(\rho), \mathbf{F})$ and $\hat{\eta} \in C^{l-1}(\hat{\mathfrak{B}}'(\rho), \mathbf{F})$ for which $\hat{\xi}^* \mid \hat{\mathfrak{B}}'(\rho) = \hat{\xi} \mid \hat{\mathfrak{B}}'(\rho) + \hat{\delta}\hat{\eta}$ and $\|\hat{\xi}^*\|_\rho$ and $\|\hat{\eta}\|_\rho \leq K \|\hat{\xi}\|_\rho$. Here $\rho \leq \rho_2 < \rho_1$ and K only depends on ρ_2 .

Proof. Before we can use the double complex $\{C_v^{k, k}\}$ we must introduce two “ ε -maps”. To define the ε_1 -map, let $Z_v^{k, k} \subset C_v^{k, k}$ consist of all $\hat{\xi} \in C_v^{k, k}$ such that $\delta\hat{\xi} = \partial\hat{\xi} = 0$. Now we shall define the ε_1 -map: $\varepsilon_1 : Z^l(\hat{\mathfrak{B}}, \mathbf{F}) \rightarrow Z_0^{0, l}$. A section belonging to an element of $Z_0^{0, l}$ is defined on some set $\hat{U}_{i_0}^{(0)} \cap \hat{V}_{i_0, \dots, i_l}^{(0)} \subset \hat{V}_{i_0 \dots i_l}$ where sections of elements of $Z^l(\hat{\mathfrak{B}}, \mathbf{F})$ are defined. Hence we get a natural restriction map ε_1 which also maps cocycles into cocycles. It is easy to verify that $\|\varepsilon_1(\hat{\xi})\|_\rho \leq K \|\hat{\xi}\|_\rho$. Theorem I can be used because $(U_i^{(1)} \cap V_{i_0 \dots i_l}^{(1)})_i \subset (V_{i_0 \dots i_l}^{(0)})_i$ for every i and every $i \in \{i_0, \dots, i_l\}$. Recall that the norm in $Z^l(\hat{\mathfrak{B}}, \mathbf{F})$ is defined with respect to

$\hat{\mathfrak{V}}_0$ here. The “ ε_2 -map”: we shall construct a map $\varepsilon_2: Z_{3l}^{l,0} \rightarrow Z^l(\hat{\mathfrak{U}}, \mathbf{F})$. Let $\hat{\xi} = \{\hat{\xi}_{i_0, \dots, i_l, \iota_0}\} \in Z_{3l}^{l,0}$. Here $\hat{\xi}_{i_0, \dots, i_l, \iota_0}$ is defined on $\hat{R}_{i_0 \dots i_l, \iota_0}^{(3l)}$. Because $\hat{\delta}\hat{\xi} = 0$ we see that the elements $\hat{\xi}_{i_0 \dots i_l, \iota_0}$ are independent of ι_0 . Now $\bigcup_{\iota=1}^{l^*} \hat{V}_{\iota}^{(3l)}$ covers $X(\rho_1)$. If we put $\varepsilon_2(\hat{\xi})_{i_0 \dots i_l} = \hat{\xi}_{i_0 \dots i_l, \iota_0}$ in $\hat{U}_{i_0 \dots i_l}^{(3l)} \cap \hat{V}_{\iota_0}^{(3l)}$ then we see that $\varepsilon_2(\hat{\xi})_{i_0 \dots i_l}$ is a well defined section on $\hat{U}_{i_0 \dots i_l}^{(3l)}$. In this way we obtain $\varepsilon_2(\hat{\xi}) \in Z^l(\hat{\mathfrak{U}}, \mathbf{F})$. Here $\varepsilon_2(\hat{\xi})$ is a cocycle because $\hat{\delta}\hat{\xi} = 0$. Now we prove that $\|\varepsilon_2(\hat{\xi})\|_{\rho} \leq K \|\hat{\xi}\|_{\rho}$.

Verification. A computation of $\|\varepsilon_2(\hat{\xi})\|_{\rho}$ involves the following: $\varepsilon_2(\hat{\xi}) = \{\xi_{i_0 \dots i_l}^{(2)}\}$. Look at some $\xi_{i_0 \dots i_l}^{(2)}$ in the chart \mathcal{W}_i with $i \in \{i_0, \dots, i_l\}$. We write $\hat{\xi}_{i_0 \dots i_l}^{(2)} = \sum a_v(t/\rho)^v$ over $(U_{i_0 \dots i_l}^*)_i$ and compute $\sup_v |a_v(U_{i_0 \dots i_l}^*)_i|$. A computation of $\|\hat{\xi}\|_{\rho}$ involves the following: Look at $\hat{\xi}_{i_0 \dots i_l}$ over $(U_{i_0 \dots i_l}^* \cap V_{\iota}^*)_i$ in a chart W_i . Here ι is fixed. We write $\hat{\xi}_{i_0 \dots i_l, \iota} = \sum_{\iota^*} a_{v^{\iota}}(t/\rho)^v$ and compute $\sup_v |a_{v^{\iota}}(U_{i_0 \dots i_l}^* \cap V_{\iota}^*)_i|$. Now $\bigcup_{\iota} V_{\iota}^*$ covers X_0 . Hence we would have $\sup_{v, \iota} |a_{v^{\iota}}(U_{i_0 \dots i_l}^* \cap V_{\iota}^*)_i| = \sup_v |a_v(U_{i_0 \dots i_l}^*)_i|$ if $a_v = a_{v^{\iota}}$ in $(U_{i_0 \dots i_l}^* \cap V_{\iota}^*)_i$. But this is obvious since $\xi_{i_0 \dots i_l}^{(2)} = \hat{\xi}_{i_0 \dots i_l, \iota}$ in $(U_{i_0 \dots i_l}^* \cap V_{\iota}^*)_i$. Hence we have $\|\varepsilon_2(\hat{\xi})\|_{\rho} \leq \|\hat{\xi}\|_{\rho}$.

Now we are ready to start the proof of the smoothing theorem. We let K denote a constant, which may be different at different occurrences.

We also introduce a double complex $\{\tilde{C}_{3v}^{k, \kappa}\}$ using $(\mathfrak{V}, \mathfrak{V})$, i.e. it is defined just as the previous double complex was, using \mathfrak{V} -sets instead of \mathfrak{U} -sets. We shall inductively construct the following elements:

$$\hat{\xi}_v = \{\hat{\xi}_{i_0 \dots i_v, \iota_0 \dots \iota_{l-v}}\} \in Z_{3v}^{v, l-v}$$

$$\tilde{\xi}_v = \{\tilde{\xi}_{i_0 \dots i_v, \iota_0 \dots \iota_{l-v}}\} \in \tilde{Z}_{3v}^{v, l-v}; v = 0, \dots, l$$

$$\hat{\eta}_v = \{\hat{\eta}_{i_0 \dots i_{v-1}, \iota_0 \dots \iota_{l-v}}\} \in C_{3v}^{v-1, l-v}$$

$$\tilde{\eta}_v = \{\tilde{\eta}_{i_0 \dots i_{v-1}, \iota_0 \dots \iota_{l-v}}\} \in \tilde{C}_{3v}^{v-1, v-1}; v = 1, \dots, l$$

$$\tilde{\gamma}_v = \{ \tilde{\gamma}_{i_0 \dots i_{v-1}, \iota_0 \dots \iota_{l-v-1}} \} \in \tilde{C}_{3v-3}^{v-1, l-v-1}; \quad v = 1, \dots, (l-1)$$

$$\text{and } \tilde{\gamma}_l = \{ \tilde{\gamma}_{i_0 \dots i_{l-1}} \} \in C^{l-1}(\mathfrak{V}_{3l}).$$

The construction: $\hat{\xi} \in Z^l(\hat{\mathfrak{V}}(\rho), \mathbf{F})$ is given. The whole construction is done using ρ instead of ρ_1 and we omit ρ to simplify the notation. We put $\varepsilon_1(\hat{\xi}) = \hat{\xi}_0 \in Z_0^{0,l}$. Now we apply the Smoothing Lemma and get $\hat{\eta}_1$ such that $\partial \hat{\eta}_1 = \hat{\xi}_0$ with $\| \hat{\eta}_1 \|_\rho \leq K \| \hat{\xi}_0 \|_\rho \leq K \| \hat{\xi} \|_\rho$. Put $\hat{\xi}_1 = \delta \hat{\eta}_1$. Obviously $\| \hat{\xi}_1 \|_\rho \leq K \| \hat{\eta}_1 \|_\rho$. Inductively we find $\delta \hat{\eta}_v = \hat{\xi}_{v-1}$ and we put $\hat{\xi}_v = \delta \hat{\eta}_v$ where $\hat{\eta}_v$ are found from the Smoothing Lemma. Finally we get $\hat{\xi}_l$ and we have $\| \hat{\xi}_l \|_\rho \leq K \| \hat{\xi} \|_\rho$. Now we define $\tilde{\xi}_v$ and $\tilde{\eta}_v$ as follows. Put $\tilde{\xi}_0 = \hat{\xi}_0$ where $\tilde{\xi}_0 \in \tilde{Z}_0^{0,l}$ is obtained by natural restriction of $\hat{\xi}_0$. Put $\tilde{\eta}_v = (-1)^v \{ \hat{\xi}_{i_0 \dots i_{v-1}, \iota_0 \dots \iota_{l-v}} \}$ which is well defined with respect to $(\mathfrak{V}_{3v}, \mathfrak{V}_{3v})$ by taking natural restrictions. Put $\tilde{\xi}_v = \delta \tilde{\eta}_v$ for $v = 1, \dots, l$. A computation shows that $\tilde{\xi}_{v-1} = \delta \tilde{\eta}_v$ when $v = 1, \dots, l$. Notice that this is trivial when $v = 1$. In the following discussion each $\tilde{\eta}_v$ is restricted to $(\mathfrak{V}_{3v}, \mathfrak{V}_{3v})$. We have $\partial(\tilde{\eta}_1 - \hat{\eta}_1) = 0$. Hence we find $\tilde{\eta}_1 - \hat{\eta}_1 = \delta \tilde{\gamma}_1$ by the Smoothing Lemma. Now we define $\tilde{\gamma}_v$ such that $\tilde{\gamma}_v = \tilde{\eta}_v - \hat{\eta}_v - \delta \tilde{\gamma}_{v-1}$ inductively. This is possible because $\partial(\tilde{\eta}_v - \hat{\eta}_v - \delta \tilde{\gamma}_{v-1}) = 0$, for we have $\partial(\tilde{\eta}_v - \hat{\eta}_v - \delta \tilde{\gamma}_{v-1}) = \tilde{\xi}_{v-1} - \hat{\xi}_{v-1} - \delta \partial \tilde{\gamma}_{v-1} = \delta \tilde{\eta}_{v-1} - \delta \hat{\eta}_{v-1} - \delta(\tilde{\eta}_{v-1} - \hat{\eta}_{v-1}) = 0$. We get finally $\tilde{\gamma}_{l-1} \in \tilde{C}_{3l}^{l-2,0}$ and then $\delta \tilde{\gamma}_{l-1} \in \tilde{C}_{3l}^{l-1,0}$. We have $\partial(\tilde{\eta}_l - \hat{\eta}_l - \delta \tilde{\gamma}_{l-1}) = 0$. Therefore we can put $\tilde{\gamma}_l = \varepsilon_2(\tilde{\eta}_l - \hat{\eta}_l - \delta \tilde{\gamma}_{l-1})$. It follows that $\tilde{\gamma}_l \in C^{l-1}(\mathfrak{V}_{3l})$ and $\delta \tilde{\gamma}_l = \varepsilon_2(\tilde{\xi}_l - \hat{\xi}_l)$. We have $\varepsilon_2(\tilde{\xi}_l) = -\hat{\xi} \mid \mathfrak{V}'$ and for $\varepsilon_2(\hat{\xi}_l) = -\hat{\xi}^*$ and $\hat{\eta} = \tilde{\gamma}_l$ the required equation $\hat{\xi}^* = \hat{\xi} + \delta \hat{\eta}$. The estimates follow immediately from the construction and the Smoothing Lemma.