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= { U,(p)} is a Stein covering of X (p). We say then that i (p) is a
measure covering of X (p).

Admissible refinements of measure coverings. Let U (p) and U* (p)
be two measure coverings of X (p). We say that U* (p) is an admissible

refinement of U (p) if the following conditions hold:

1) U, = < U, for each ..
U, . ,=U, 00U weput(U,  )=o,""(U,. ., <E"(p)
for each ve{iy...t; }. It is now required that (UTO“M)v < (U,,...,)u for

all vy ue{ig...t; }.

3) UT o=U_n..n U:; (- (ULO”M)# for each pe {1 ...1, }.

0---ta L0

EXISTENCE OF ADMISSIBLE REFINEMENTS OF MEASURE COVERINGS

Existence Theorem. For every fixed integer s we can find, for some
p >0, asequence U, <« U,_; < ... < U; < U, of finer measure coverings
of X (p) each of which is an admissible refinement of the following.

Proof. We first construct a measure covering of X (p) for some
p <minp.LetUy = {U,} ', be a Stein covering of X, such that U, = = W,
for ve{l,..,.¥}. Choose a fixed p, < minp,. Now the open sets
®,~" (U, X E"(py)) cover X, and hence they also cover X (p) for some
sufficiently small p. Hence U, defines a measure covering of X (p). It is also
clear that U, defines a measure covering of X (p’) for each p’ < p. Let us

now construct ;. We let A* = { U’ }{ be a Stein covering such that
U, = < U, always holds. Now we can find p; < p such that { ﬁ* (p) =
= &1 (U, X E"(p,))}}y cover X (p;). Hence 11 (,01) and u(pl) are
measure coverings of X (p,). But we do not yet know if u (pl) < l[ (p1)-
We claim that if p, < p, is sufficiently small then 11 (p2) < 1I (p,). For

suppose this is false. Say that 2) fails for 11 (p,) and 11(/)2) when
O < P2 \ P1- Hence d5v ! (Uz,o...Ll XEn(pZ)) @u—_l (UL()...LA E" (pZ)) arc

non empty for suitable indices while p, — 0. Choose a point x, from each
of these sets. Because x,€ X (p;) which is relatively compact we may

assume that x, — x,. Obviously we get x, € U by ULO.__L ,» & contradic-
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tion because U, . < Uy 0 ... O GE < U, In the same way we can
prove that condition 3) is satisfied if p, is sufficiently small and the theorem

1s clear.

GENERAL THEORY

Let G be an analytic manifold. We put G=GXxXE" (pl) where p; 1s
an n-tuple of posmve numbers Let 7: G — E" (py) and ?B G — G be the

projection maps. G’ c G denotes an open subset and G* = G NG x{0}.
The set G* can be identified with an open subset of G. We denote by

o: G* X E"(p,) — G* a biholomorphic fiber preserving map, i.e. 7 o o0 = 7*
where n*: G* X E" (p;) — E"(p,) is the natural projection. Let p < p, =

= yp; < py where0 < y < 11s a fixed number. We put G{p) = G x E" (p).

If fis a holomorphic function on G (p) we write /= Y a,(¢/p)” with
a, € I(G). We define the norm || /||, of f by || /||, = sup { sup |4, (G)|}.

If fel(G (p)) we see that fo a is a well defined function on G* X E" (p)
because o is fiber preserving. We define || fo «||, using G* instead of G as
above. We have the proposition:

Proposition 1. There exists a constant K such that || fo o ||, < K||f]],
where K = K (p,) is independent of p < p,.

0

Proof. We write f== Y a,(t/p)” with a,e I(G). Now we get f 0 o =

vl =0
=) (a,0 P o «) (t/p)’ because « is fiber preserving. Since P (G*) = G

we get |a, o P(GY)| <]|a, (@] <||f]],, Now a,0 PBoa admits
a Taylor series: a,0 Poa=) C,, (t/p)* with C,,eI(G*). Since
l 2. Coi (t/p)* l < ”pr in G* X E"(p;) and p < p, = yp; Cauchy’s in-
equalities give us | C,; (G*)| < || f||, »'*!. Letus puth, = » C,,. We get

v+Ai=p

16,6 <117 ], £ =117, (1 =™ = K[| 7]}, Now we can
wiite f o =300 Boalp) =¥ Cp (lp) (W) =T b, o). By

definition we haye | foall,= %up l b (G*)| K|/,

Let us now consider h = (hvu) which is a ¢ X ¢ matrix with h,, el (G).

The h,, are also assumed to be bounded on G.
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