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A A
{ UL (p) } Ll is a Stein covering of X (p). We say then that it (p) is a

measure covering of X (p).

A A
Admissible refinements of measure coverings. Let It (p) and tt* (p)

A
be two measure coverings of X (p). We say that U* (p) is an admissible

A
refinement of It (p) if the following conditions hold:

1) [/* c c Lf for each i.

2) Ift/:o...u=t/:on...nC/;wepUt(C/:o...l;i)v #v-1(t/:o..,/lx£"(p))
for each ve{t0...i,}. It is now required that (t/*0.„,tA)v <= (Vl0.--A< for
all v, y, e{ t0 ix }.

3) U:0...lA n n f * c (C/10...l;), for each P e { lo }

Existence of admissible refinements of measure coverings

Existence Theorem. For every fixed integer s we can find, for some

p > 0, a sequence Us <| ÎIs_i <1 Hi Xt0 of finer measure coverings
of X (p) each of which is an admissible refinement of the following.

Proof. We first construct a measure covering of X (p) for some

p < min pt. Let M0 { HL } ^ be a Stein covering of X0 such that i/Lc c
for i e { 1, i* } Choose a fixed p0 < min pt. Now the open sets

«vue X En (p0)) cover X0 and hence they also cover X (p) for some

sufficiently small p. Hence tt0 defines a measure covering of X (p). It is also

clear that H0 defines a measure covering of X (p') for each p' < p. Let us

now construct U1. We let H* { I/*} be a Stein covering such that
A

£/* cz c UL always holds. Now we can find p1 < p such that { 17* (px)

— (Pf1 (C7* xE"(p1))}I,i cover X(Pi). Hence it* (pt) and U (pj are
A A

measure coverings of X (pf). But we do not yet know if U* (px) ll (pf).
A A

We claim that if p2 < p1 is sufficiently small then U* (p2) <1 U (p2)- For
A A

suppose this is false. Say that 2) fails for U* (p2) and It (p2) when

0 < p2 < Pl. Hence ^"1X £"(p2)) (C/10...lA X £"(p2)) are

non empty for suitable indices while p2 0. Choose a point x, from each

of these sets. Because xte X(pl) which is relatively compact we may

assume that xt -> x0. Obviously we get x0 e U*Q — L^.. LA,
a contradic-
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tion because U* <= U*nn U* cz {/,, In the same way we can
<• 0 • • • <• A 'A HI * • "•A

prove that condition 3) is satisfied if p2 sufficiently small and the theorem
is clear.

General Theory

A

Let G be an analytic manifold. We put G G X En (p2) where p1 is
A A

an /7-tuple of positive numbers. Let n: G -> En (px) and ^3: G -> G be the
A A A

projection maps. G* c= G denotes an open subset and G* G* n G x { 0 }.
The set G* can be identified with an open subset of G. We denote by

A
a: G* x En (p/ -> G* a biholomorphic fiber preserving map, i.e. tc o a 7i*

where 71*: G* x £" (p±) -> L"(Pi) is the natural projection. Let p < p2
A

7Pi < Pi where 0 < 7 < 1 is a fixed number. We put G (p) G x £"(p).
A

If / is a holomorphic function on G (p) we write / ]Tav(/p)v with
uv e /(G). We define the norm ||/||p of/by ||/||p f* sup { sup | av (G) | }.

V
A

If /e/(G(p)) we see that /o a is a well defined function on G* x En (p)
because a is fiber preserving. We define |[/o a ||p using G* instead of Gas
above. We have the proposition:

Proposition 1. There exists a constant K such that ||/o a ||p < K ||/||p
where K K(p2) is independent of p < p2.

00

Proof. We write /== X av (?/p)v with av e 7(G). Now we get foot,
I v I 0

A
X (av ö iß o a) (?/p)v because a is fiber preserving. Since iß (G*) c G

we get I av o iß (G*) | < | av(G)| < ||/||p. Now o ip o a admits
a Taylor series: avoiß o a £ CvA (t/p)A with CVÀeI(G*). Since
I X Ca (*/pX1 < ||/||p in x En(Pi) an<3 P < P2 TPi Cauchy's
inequalities give us | CvA(G*) | < H/l^ y lA'. Let us put h,, X CV/i- We get

I bß(G*) I < ||/||p X 7|a| ||/||p (1 ~ y)~" Ky / ||p. Now we can
write / oa=X«vo^oa (t/pf X CvA (t/p)A (?/p)v £ £ (t/p)". By

v A,v p
definition we have ||/o a ||p sup | bß (G*) | < A:||/||p.

ß

Let us now consider h (hvJ which is a matrix with hvß e 1(G).
The hVß are also assumed to be bounded on G.
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