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The previous lemma shows that &, = Y a,, b, + dny, where
e C'"™1 (B) with || n, | B, || < K| &5, || and |a,; | <

Let us put a, = ). a,, (tlp,)’ and n = n, (#/p,)". We see that
17 e Cl 1 (% (p2)) and a,el(E" (pz)) An easy computation gives
61 l ﬂ) (p2) = > a, b,l | % (p,) +06n. It follows by definition that

A

& = ) a, b,l We have now proved that bl ... b, generate V,y ((g0))

at the origin. It follows in the same way that bl ... b, generate ¥, ((q@)X)
for every te E" (p,) because it is enough to do everything in a polydisc
around 7. Now we also prove that the sheaf ¥, ((q0)y) is free, i.e. there

A A

A
are no relations between b, ... b, at any point. Say for example that ¢, b, +

+ ... +a, b, = 0aty, ((g0)x)e, where g, are germs of analytic functions
at the origin in £” (p,). Hence 410y -+ a,b,=0in H (X (p), (q0)y)
for some p > 0 w1th a, € I(E" (p)). It follows that Z a, b : 5/5\ in X (p)
for some é eC? (11 (0), (q0)y). Take a point te E" (p) where some
av # 0. Now we see that on { #} X X, we have c~zl (t)b; + ... -+ c;r ()b, =

=0¢| {1} X X,eC (U, (q0)x,). This gives a contradiction to the
fact that b, ... B, are a base of H' (X, (q(O)XO).

MEASURE CHARTS

Let X be a connected complex analytic manifold of dimension m.
Let F be a holomorphic vector bundle of rank g on X and F the sheaf of
holomorphic crossections in F. This sheaf is locally free. A regular proper
holomorphic map ¥ : X — E" is given. Let us put X, = ¢~ ! (0). Now X is
a compact analytic manifold of dimension m — n. We now introduce
special open coverings around X, in X.

Definition. A measure chart %" = (W, @, ©, p) is a quadruple satisfying
the conditions:

1) W< Xisopen and W = W n X, is Stein.

2) &: W — E" (p) X Wis a biholomorphic map such that the following
diagram is commutative:




— 105 —
A D
W — E"(p) x W
VAV
E"(p) .

Here 7 1s the projection map.

A

3) O: F[W LW % C?is a trivialization of F on W.

If % is a given measure chart on X we can identify the sheaf ( W K ‘ W)
of ¢ y-modules with the sheaf (W >< E"(p), ¢ O) using @ and ©. If U = W

is open and p’ < p we put U(p)—clj (U x E"(p")). Hence if

sel (U (p"), F) we can identify s with an element of I’ (U X E"(p"), q0).
We shall simply denote this element of I' (U X E" (p’), ¢ 0) by the same

letter s. Now we can expand s in a Taylor series: s = Y s, (¢/p')” where
[vi=0
s, eql(U).

Definition of a norm. When s el (U(p’),F) we put || s]|| =

Strictly speaking the norm || s || is taken with respect to the measure
chart /.
It is not hard to see that for every point x € X, there exists a measure

A

chart #~ such that x € W. In particular we can cover X, by finitely many

L*

measure charts #', = (W, ®,0,p),1.e. Xy € < u W, We remark that it
1

L*

follows that X (p) =y~ ' (E"(p)) € = u W, for some p > 0 with p <p,
1

because y is a proper map. The collection % = { ¥, } Y is called an atlas
around X,. From now on #" is a fixed atlas.

Measure coverings. We shall define measure coverings with respect to
the given atlas %" above. If Uc W, is open we put (U) (p) =

L

= &, (U x E"(p)) when p < p,. We see that (U), (p) = W, and (U), (p)
is Stein if U js Stein. Let W = { U, }"; be a Stein covering of X, with U, = < W,

L

for each 1. Let p > 0 with p < min p,. We put U, (p) = (U), (p). We

see that U, (p) = = W, and U, (p) are Stein. It is now required that U (p) ==

et ey eyt e
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= { U,(p)} is a Stein covering of X (p). We say then that i (p) is a
measure covering of X (p).

Admissible refinements of measure coverings. Let U (p) and U* (p)
be two measure coverings of X (p). We say that U* (p) is an admissible

refinement of U (p) if the following conditions hold:

1) U, = < U, for each ..
U, . ,=U, 00U weput(U,  )=o,""(U,. ., <E"(p)
for each ve{iy...t; }. It is now required that (UTO“M)v < (U,,...,)u for

all vy ue{ig...t; }.

3) UT o=U_n..n U:; (- (ULO”M)# for each pe {1 ...1, }.

0---ta L0

EXISTENCE OF ADMISSIBLE REFINEMENTS OF MEASURE COVERINGS

Existence Theorem. For every fixed integer s we can find, for some
p >0, asequence U, <« U,_; < ... < U; < U, of finer measure coverings
of X (p) each of which is an admissible refinement of the following.

Proof. We first construct a measure covering of X (p) for some
p <minp.LetUy = {U,} ', be a Stein covering of X, such that U, = = W,
for ve{l,..,.¥}. Choose a fixed p, < minp,. Now the open sets
®,~" (U, X E"(py)) cover X, and hence they also cover X (p) for some
sufficiently small p. Hence U, defines a measure covering of X (p). It is also
clear that U, defines a measure covering of X (p’) for each p’ < p. Let us

now construct ;. We let A* = { U’ }{ be a Stein covering such that
U, = < U, always holds. Now we can find p; < p such that { ﬁ* (p) =
= &1 (U, X E"(p,))}}y cover X (p;). Hence 11 (,01) and u(pl) are
measure coverings of X (p,). But we do not yet know if u (pl) < l[ (p1)-
We claim that if p, < p, is sufficiently small then 11 (p2) < 1I (p,). For

suppose this is false. Say that 2) fails for 11 (p,) and 11(/)2) when
O < P2 \ P1- Hence d5v ! (Uz,o...Ll XEn(pZ)) @u—_l (UL()...LA E" (pZ)) arc

non empty for suitable indices while p, — 0. Choose a point x, from each
of these sets. Because x,€ X (p;) which is relatively compact we may

assume that x, — x,. Obviously we get x, € U by ULO.__L ,» & contradic-
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