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image sheaf of S'of dimension /. Our main problem is to decide whether i ,,(S)
is a coherent analytic sheaf of ¢y-modules if S is a coherent analytic
sheaf on X.

A VERY SPECIAL CASE

We shall consider a special case where our main problem is easily solved.
Let X, be a compact analytic manifold of pure dimension m — n. We put
E"(po) = {(ty .. 1,)€C"; | t;]| < p} ). Here py = (o} ... py) is a fixed
n-tuple of strictly positive numbers. Let X = E" (py) X X, and X (p) =

= E"(p) X X, for p < p,. We see that X is an analytic manifold of pure
dimension m. Let Y : X — E" (p,) be the projection map. Now X is fibered
by the fibers Yy ~' (1) = X (1) = {t} X Xy, = X, for € E" (p,). We take
the sheaf Sto be S = (q€),. With these notations we can state the following.

Theorem : The direct image sheaf V(;, ((q€¢)x) is a coherent sheaf of
@'En(po)—modules for every [ > 0.

Proof. Because X, is a compact analytic manifold we can find a finite
Stein covering U = { U, ... U,. } of X,. Let us put U = E" (py) X U
then we see that fl = {U1 .. U } is a Stein covering of X. Let =
= { ELO L} E C! (1AI, (q0)x). Now ¢, is a g-tuple of holomorphic

functions on E” (py) X U,v0 ... Hence chO .., admits a Taylor series of the

form é"O ven Y - Z é(v:)) sy (Z‘/IOO)‘ \Vhere ¥ = (vl LA n) l Vl - V +
jv|=0

+ ... = v,and (t/p)" = (t;/p)"t ... (t,/p,)'". The uniqueness of a Taylor

series shows that {f(;;) ..., } is an alternating cochain over . Putting &, =
{ éﬂ‘(’)) Ll} e C' (U, (q0)x) we may write & =) &, (#/p)". Introducing the map
A

(v) : & = &y we get a commutative diagram of the form:

€ (1, (g0)x) — C** (I ,(q0)y)
()} L

o

C! (u: (q@)xo) - C'™! U, (q@)xo) .

We now need a theorem of Cartan-Seire: Let X, be a compact analytic
manifold. Then, for any coherent analytic sheaf Sthe set H? (X,, S) is a finite
dimensional vector space for all p > 0.
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Using this theorem we conclude that H “( X, (q(O)XO) has a finite base

b, ... b,. By Leray’s theorem we also have H' (U, (¢0)x,) = H'(Xy, (90)x,)-
Hence we can find b, ... b, € Z' (!, (g0)y,) such that b, maps into b, under
the natural homomorphism Z' (U, (q0) XO) — H'(X,, (q0) Xo)' We now

introduce a pseudonorm in C' (U, (¢0) X()) as follows:

Norm definition. Let ne C'(U, (q(Q)XO). Then we put ||7]| =

= (Lil}gl)llmo Lolland|ln, ol = max sup [no(U, ....)|, where,n, ., =
=1y, ...,n,)- Notice that it may happen that || || = -+ c0. Let B == {V; ... Vs}
be an open covering of X,,. The covering 8 is much finer than U = {Uy...Us}if
V. < < U, holds for every .. We write B < i in that case. Let us now choose

L

Stein coverings B; and B such that B, < BV < . In C' (B, (q(O)XO) and
C! (231,(q(9)X0) we introduce a pseudonorm just as in C* (U, (q(O)XO). If
e C U, (q(O)XO) we have defined ¢| B e C' (D, (q(D)XO). It follows that
|¢] 8| < o because V, ., =<U, ... Let us now choose Ee

Z'(B, (q(O)XO). Since by ...b, e Z' (U, (q(O)XO) constitute a base of H'(X,, (q(O)XO)

it follows from Leray’s theorem that ¢ = ) a, bvl% + 6y where a,e C!
and ne C'71 (B, (q(O)XO). Now we need the following.

Lemma: There exists a constant K such that |a,| < K||¢|| and
] By || < K] €.

The proof follows because by the Banach theorem the map (ay,...,a,,n) —
¢ of the Fréchet spaces C"x C'™1 (B, g0, onto Z' (B, (q)0y,)) is open.

Let &eC'(N, (q(Q)XO). We can extend each ¢ ., eql(U, .. )

= E (o) X Uy ...p We get & e Z' (U (40)y)

obtained from ¢ by a constant extension. In particular we extend b, ... b,

A A

constantly to b, ...b,e Z' (U, (q0)x). Letb, ... b, be the images of b ... Db,
in the direct image sheaf ¥, ((g0)y). Let now &, € ¥4y ((40)x)(o, Where 0
is the origin of E"(p,). By definition we can find & e H' (X(p,),q0) with

constantly over U, |
g 10

0 < p; <<p, which maps into &,. Now U(p;) = {E"(py) X U} is a
Stein covering of X (p,). Hence Leray’s theorem shows that we can find

&e Z' (U (py), (q0)x) such that & maps into &,. Let us write & == Y & ,(t/p,)"
where ¢,,€ Z' (U, (q@)XO). Let us also choose 0 < p, < p,; and consider

& B(p,) = ¢, €Z' (B (p,),(q0)x). Letus write &, ==Y &* ,\(1/p,)". Obviously
we get ¢,y = (p2/p1)" &y | B. It follows easily that supv| é(:) | < 0.
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The previous lemma shows that &, = Y a,, b, + dny, where
e C'"™1 (B) with || n, | B, || < K| &5, || and |a,; | <

Let us put a, = ). a,, (tlp,)’ and n = n, (#/p,)". We see that
17 e Cl 1 (% (p2)) and a,el(E" (pz)) An easy computation gives
61 l ﬂ) (p2) = > a, b,l | % (p,) +06n. It follows by definition that

A

& = ) a, b,l We have now proved that bl ... b, generate V,y ((g0))

at the origin. It follows in the same way that bl ... b, generate ¥, ((q@)X)
for every te E" (p,) because it is enough to do everything in a polydisc
around 7. Now we also prove that the sheaf ¥, ((q0)y) is free, i.e. there

A A

A
are no relations between b, ... b, at any point. Say for example that ¢, b, +

+ ... +a, b, = 0aty, ((g0)x)e, where g, are germs of analytic functions
at the origin in £” (p,). Hence 410y -+ a,b,=0in H (X (p), (q0)y)
for some p > 0 w1th a, € I(E" (p)). It follows that Z a, b : 5/5\ in X (p)
for some é eC? (11 (0), (q0)y). Take a point te E" (p) where some
av # 0. Now we see that on { #} X X, we have c~zl (t)b; + ... -+ c;r ()b, =

=0¢| {1} X X,eC (U, (q0)x,). This gives a contradiction to the
fact that b, ... B, are a base of H' (X, (q(O)XO).

MEASURE CHARTS

Let X be a connected complex analytic manifold of dimension m.
Let F be a holomorphic vector bundle of rank g on X and F the sheaf of
holomorphic crossections in F. This sheaf is locally free. A regular proper
holomorphic map ¥ : X — E" is given. Let us put X, = ¢~ ! (0). Now X is
a compact analytic manifold of dimension m — n. We now introduce
special open coverings around X, in X.

Definition. A measure chart %" = (W, @, ©, p) is a quadruple satisfying
the conditions:

1) W< Xisopen and W = W n X, is Stein.

2) &: W — E" (p) X Wis a biholomorphic map such that the following
diagram is commutative:
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