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imagesheaf of Sof dimension /. Our mainproblem is to decide whether ^(/)(5)
is a coherent analytic sheaf of 0y-modules if S is a coherent analytic
sheaf on X.

A VERY SPECIAL CASE

We shall consider a special case where our main problem is easily solved.

Let X0 be a compact analytic manifold of pure dimension m — n. We put
E"(Po) {( t x...f„) e C" ; J f, I < p? }. Here p0 - (p° p„°) is a fixed

72-tuple of strictly positive numbers. Let X En (p0) x 2f0 and (p)
En (p) x X0 for p < p0. We see that JL is an analytic manifold of pure

dimension m. Let \J/ : X -> En (p0) be the projection map. Now X is fibered

by the fibers ij/'1 (t) X (t) { t} X X0 m X0 for t e En (p0). We take
the sheaf 5 to be S (qC)x. With these notations we can state the following.

Theorem : The direct image sheaf if/(l) (fqC)x) is a coherent sheaf of
^modules for every / > 0.

Proof. Because X0 is a compact analytic manifold we can find a finite
A

Stein covering II — {U1 Lj* } of X0. Let us put U, En (p0) x Uj,AAA A
then we see that U { U1 U,*} is a Stein covering of X. Let ç

A A A

{ } 6 Cl (U, Now ç, is a g-tuple of holomorphic
1

A
functions on En (pn) X 17, Hence £, admits a Taylor series of the

UJ *o "• -i -o ••• '/
A X

form <f,o H
E (?/Po)v where v (vt v„), | v | Vl +

I v I - 0

+ + vn and (t/py (%/Pi)vl (.tJPnY"• The uniqueness of a Taylor
series shows that {£(,v) } is an alternating cochain over U. Putting £(v>

A

{ £(lv)
l } e Cl (U, (q&)x) we may write s Z QV) (?/p)v- Introducing the map

A
(v) : £ £(v) we get a commutative diagram of the form:

Cl(u, (q<PL)- C' + I(û,(«ff)x)
(v)i

^
i(v)

C'(U,(^o)-^C'+ï(U,(«<P)Xo).

We now need a theorem of Cartan-Serre : Let X0 be a compact analytic
manifold. Then, for any coherent analytic sheaf S the set Iip (X0, S) is a finite
dimensional vector space for all p > 0.
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Using this theorem we conclude that Hl (X0, (q&)X(^ has a finite base

bx br. By Leray's theorem we also have Hl(U, (q@)x0 Hl{X09 (#)x0)-
Hence we can find bx br e Zz (U, (#$)x0) such that bv maps into bv under

the natural homomorphism Zl (U, (q@)x^) ^ (^o> (#^)x0)- We now

introduce a pseudonorm in Cz (H, (#0)xo) as follows:

Norm definition. Let rç e Cl (U, (q@)x^- Then we put || rç ||

- sup JK.-A || and y»/
l; ||= max sup | l()|, where,^ ...l;

(tQ " 1=^0^4

(Wiiq)- Notice that it may happen that 11 rj 11 =-= -f oo. Let S — { V1... VL*}

be an open covering of X0. The covering 33 is much finer than U { UL... £/*} if
Lt C= CZ Ul holds for every t. We write 33 ^ U in that case. Let us now choose

Stein coverings 33± and 33 such that 33x ^ 33 H. In Cl (33, (<q0)xQ) and

Cl (fiSu(q(9)x) we introduce a pseudonorm just as in Cl (U, (q®)x^- If
ÇeC1 (U, (q(S)x we have defined £ | 33 e Cl (33, (q<3)x^. It follows that

|| £ I 33 || < oo because V
H c c ULo... Let us now choose £ e

Z1 (33, (q(9)x)- Since bt... br e Z1 (U, (^)x0) constitute a base ofHl (X0, (q®)xQ)

it follows from Leray's theorem that £ £ öv bv 193 + öq where av e C1

and y\ e Cl~x (33, (<q(9)x Now we need the following.

Lemma : There exists a constant K such that | av | < K11 £ 11 and

!i '/1 -s <K\\t\\>
The proof follows because by the Banach theorem the map (al9... 9ar,rj) -»

Ç of the Fréchet spaces CrxCl~1(33, q@X{) onI° Z1 (33, (q)®Xo)) is open.
Let £, e C' (IX, (q<5)x)- We can extend each ^ e # /([/^... l()

constantly over {7
^ £" (p0) X V0... We get f eZ1 (it,

obtained from £ by a constant extension. In particular we extend bx br
A A /X A A A A

constantly to bx ...breZ*(U, (q@)x)- Letbi ...brbe the images of bt ...br
in the direct image sheaf i//(/) ((#0)*). Let now £0 e ((V/0)x)(o) where 0

is the origin of En (p0). By definition we can find Hl (.X(p1),qO) with
A

0 < Pi < p0 which maps into §0. NowHCPi) {J5"" (p^.) X UL} is a

Stein covering of X (pt). Hence Leray's theorem shows that we can find
A A A A

(eZ' (It (pj), (q(9)x) such that £ maps into £0. Let us write £ y £(v)(t/p i)v
where £(v) e Z' (H, Let us also choose 0 < p2 < and consider

3 I $0>2) 3ieZ'(®(p2),(^)A.).Letuswrite3i y^*(V)(//p2)v. Obviously
we get — (p2/pi)v £(v) I 33. It follows easily that supv || Ç*r) || < oo.
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The previous lemma shows that Ç*v) £ aVÀ bx + ôrjv where

îjv e C'"1 (33) with || f/v | 33i || < K|||| and | < || ç(*} ||.

Let us put ax YavA (t/Pifand )/ Y (t/PïY- We see that
A A

rj e C/_1 (fiß1 (p2)) and ax e l(En (p2))- An easy computation gives
A A A A /\
£1 | ®i (P2) Z ax h2

I 331 (P2) + <5 *7- Il follows by definition that
_ A A A

£0 — Z ax We have now proved that bx br generate ((«qO)x)
A A

at the origin. It follows in the same way that bx br generate \p{l) ((«q(9)x)

for every t<=En(p0) because it is enough to do everything in a polydisc
around t. Now we also prove that the sheaf \l'( l) (fiq$)x) is free, i.e. there

A A
"

A
are no relations between h1 hr at any point. Say for example that ax bx +

A

+ + ar br 0 at iff(l) ((q&)x){0) where al are germs of analytic functions
~ A ~ A

at the origin in E"(p0).Hence axbx + + br 0 in H1 (Z(p), (q&)x)

for some p>0 with e I(E"(p)).It follows that flv hv <5in X (p)
A A

for some £ e Cl~x (U (p), (.q($)x). Take a point t e En (p) where some

av ^ 0. Now we see that on { t } x X0 we have a1 (t) tq + + ar (Ohr
A

d ^ \ {t} x X0e Cl~l (U, (q@)x0)' This gives a contradiction to the

fact that bi br are a base of Hl (X0,

Measure charts

Let A be a connected complex analytic manifold of dimension m.

Let F be a holomorphic vectoi bundle of rank q on X and F the sheaf of
holomorphic crossections in F. This sheaf is locally free. A regular proper
holomorphic map \j/: X En is given. Let us put X0 if/'1 (0). Now X0 is

a compact analytic manifold of dimension m — n. We now introduce

special open coverings around X0 in X.

A

Definition. A measure chart iV (W,<P, 0, p) is a quadruple satisfying
the conditions:

A A

1) W c= X is open and W W n X0 is Stein.
A

2) 0: W -> En (p) X IF is a biholomorphic map such that the following
diagram is commutative :
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