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spread holomorphically, i.e. for any xeX there exists f1...fNeI(X)
such that x is an isolated common zero of j\

Let X be a complex analytic manifold. A Stein covering U { £/ } ieJ

of X is an open covering of X such that every UL is Stein. We shall often

use the following result:

Leray's Theorem : If U is a Stein covering of X then H1 (U, S)

H1 (A, S) is an isomorphism for every coherent analytic sheaf S.

The isomorphism between H1 (U, S) and H1 (X, S) means the following : If
ÇeH1 (X, S) there exists Ç e Zl (U, S) such that £ maps into £ under the

natural homomorphism Zl (H, S) -> H1 (X, S) and moreover if £ e Zl (U, S)

is mapped into zero in H1 (X, S) there exist 1] e
1 (U, S) such that £ örj

in Cl (U, S).

Direct images of sheaves

Let X and Y be complex analytic manifolds. Let i/y : X -* Y be a

holomorphic map and let S be an analytic sheaf on X. Now X is fibered by
the fibers X (y) — \j/~1 (j) for y e Y. Let U be an open neighborhood of a

point y e Y, then V i/F1 (U) is an open set in X. Hence F is a complex
analytic manifold and the restriction of S to V gives an analytic sheaf on
V. We can now define H1 (V, S). Let us put Hly u H1 (i/X1 ÇU), S)

u
where U runs over all open neighborhoods of y in Y. In Hy we introduce an

equivalence relation as follows: ^ g H1 (i/X1 ÇUÇ), S) and £2 e
Hl (i//_1 (U2), S) are equivalent iff there exists U U (y) in Y such that
V c u1 n U2 and ÇU) - c^i/X1 ÇU) in H1 (i/F1 ÇU), S). We let
*A(o (^)(y) denote the set of equivalence classes in Hly. The equivalence
class generated by £ g H1 (\I/'1 (U), S) is denoted by The set (5)(v) is

called the set of germs of cohomology classes of dimension / along the
fiber X(y). Now \jj(l) {S)iy) is an $^rmodule. For if gye(9yJ we have a

representative g e I (U) for some open neighborhood U of y. Then g o xÇ e

c I(ijj~1 (L)). If Çye\jj(l)(S)iy) and £/ is sufficiently small we can find a
representative Ç e Hl (i/X1 (£/), S) for £r Then we put gy ^ ((g o £)r
Now we form (S) u t/qZ) (S)^) where we introduce a sheaf topology.

yeY

A base of the open sets are { Çy : y e U) for £ g H1 (^_1 (H), S). If
£ e H1 (X, S) then the map y -> is a cross-section in (S). We call it
the direct image of | and denote it by i/c0 (£). The sheaf \j/(n (S) is the direct
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imagesheaf of Sof dimension /. Our mainproblem is to decide whether ^(/)(5)
is a coherent analytic sheaf of 0y-modules if S is a coherent analytic
sheaf on X.

A VERY SPECIAL CASE

We shall consider a special case where our main problem is easily solved.

Let X0 be a compact analytic manifold of pure dimension m — n. We put
E"(Po) {( t x...f„) e C" ; J f, I < p? }. Here p0 - (p° p„°) is a fixed

72-tuple of strictly positive numbers. Let X En (p0) x 2f0 and (p)
En (p) x X0 for p < p0. We see that JL is an analytic manifold of pure

dimension m. Let \J/ : X -> En (p0) be the projection map. Now X is fibered

by the fibers ij/'1 (t) X (t) { t} X X0 m X0 for t e En (p0). We take
the sheaf 5 to be S (qC)x. With these notations we can state the following.

Theorem : The direct image sheaf if/(l) (fqC)x) is a coherent sheaf of
^modules for every / > 0.

Proof. Because X0 is a compact analytic manifold we can find a finite
A

Stein covering II — {U1 Lj* } of X0. Let us put U, En (p0) x Uj,AAA A
then we see that U { U1 U,*} is a Stein covering of X. Let ç

A A A

{ } 6 Cl (U, Now ç, is a g-tuple of holomorphic
1

A
functions on En (pn) X 17, Hence £, admits a Taylor series of the

UJ *o "• -i -o ••• '/
A X

form <f,o H
E (?/Po)v where v (vt v„), | v | Vl +

I v I - 0

+ + vn and (t/py (%/Pi)vl (.tJPnY"• The uniqueness of a Taylor
series shows that {£(,v) } is an alternating cochain over U. Putting £(v>

A

{ £(lv)
l } e Cl (U, (q&)x) we may write s Z QV) (?/p)v- Introducing the map

A
(v) : £ £(v) we get a commutative diagram of the form:

Cl(u, (q<PL)- C' + I(û,(«ff)x)
(v)i

^
i(v)

C'(U,(^o)-^C'+ï(U,(«<P)Xo).

We now need a theorem of Cartan-Serre : Let X0 be a compact analytic
manifold. Then, for any coherent analytic sheaf S the set Iip (X0, S) is a finite
dimensional vector space for all p > 0.
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