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usual coboundary map 6 : C'(U, S) - C'** QU S) which makes the
system a complex. We put Z' (U, S) = Ker § < C' (U, S) and B' (U, S)
= 6 (C'""' (U, 8)). The / — th cohomology group H' (1, S) with respect to the
open covering U is Z' (U, S)/B' (U, S). An open covering B = {V,}
is finer than an open covering U = { U, } ., if there exists an index map
t: N — Jsuch that V, = U,,, for ve N. It follows that an element of
F(Ut(‘,o) RIRTORT S) can be restricted to a continuous crossection over

VVO vy In this way we get a map t* : C' (U, S) » C' (B, S). The following

diagram is commutative:

¥

C! U, S) » CI(Q}, S)
(SJ, o)

Cl+1<u, S) - wH-l(Q},S)

It follows that we have a map t*: Z' (U, S) - Z' (B, S). Let us put
Z'(X,S) = u Z'(U, S), where U runs over all open coverings of X. In
U

Z'(X,S) we can introduce an equivalence relation = as follows: Let
&, eZ', S) and &, e Z' (U, S). We put &, & &, iff there exists U, such
that U, is finer than U and U, and & |0, — &,|U, € B' (U,, S). Here we
have put &,|U, = 7, ({) where 7, comes from an index map t,: U,
— WU, Ttis easy to check that the equivalence relation defined on Z' (X, S)
is independent of the index maps. Now H' (X, .S) is the set of equivalence
classes in Z' (X, S). Because C' (U, S) is a module over the ring 7 (X) of
holomorphic functions on X it follows that H'(QU, S) and H'(X, S) are
modules over I(X). We have a natural homomorphism H*'(Ql,S)
— H'(X, S). Let now X’ = X be an open subset. Then X’ is a complex
analytic manifold. We put §' = S|X’ and W =Un X' = {UnX"}
and obtain an open covering of X’. The restriction of crossections gives a
“homomorphism 7 : C' U, S) » C' (W, S") which commutes with § and
“any index map 7. Thus we obtain restriction homomorphisms: H' (U, S)
- H'QW,8) and H' (X, S) » H' (X', S).

STEIN MANIFOLDS

A complex analytic manifold X is a Stein manifold if: 1) X is holo-
‘morphically convex, i.e. if D = (x,)T is an infinite discrete set, then there
exists feI(X) such that |f(D)| = sup |f(x,)| is infinite. 2) X can be
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spread holomorphically, i.e. for any xe X there exists fi ... fnel(X)
such that x is an isolated common zero of f; ... fy.

Let X be a complex analytic manifold. A Stein covering U = { U, } s
of X is an open covering of X such that every U, is Stein. We shall often
use the following result:

Leray’s Theorem: If U is a Stein covering of X then H t, S)
— H'(X, S) is an isomorphism for every coherent analytic sheaf S.

The isomorphism between H' (U, S) and H' (X, S) means the following: If
¢ e H' (X,.S) there exists & e Z' (U, S) such that ¢ maps into ¢ under the
natural homomorphism Z* (1, ) » H' (X, S) and moreover if & € Z' (1, S)
js mapped into zero in H' (X, S) there exist 7 € C'~* (U, S) such that £ = dn
in C' (U, S).

DIRECT IMAGES OF SHEAVES

Let X and Y be complex analytic manifolds. Let y : X — Y be a
holomorphic map and let S be an analytic sheaf on X. Now X 1s fibered by
the fibers X () = ¥~ ! (») for y € Y. Let U be an open neighborhood of a
point ye Y, then ¥V = ' (U) is an open set in X. Hence V is a complex
analytic manifold and the restriction of S to V gives an analytic sheaf on
V. We can now define H'(V,S). Let us put H, = u H' (y ' (U), S)

U

where U runs over all open neighborhoods of y in Y. In H, we introduce an
equivalence relation as follows: ¢, € H' (y~' (U)), S) and ¢, €
H' (Y~ (Uy), S) are equivalent iff there exists U = U (y) in Y such that
Uc U nU,and &y~ (U) = &Y™ (U) in H (Y~ (U), S). We let
Y1y (S)(,, denote the set of equivalence classes in H)l,. The equivalence
class generated by £ € H' (' (U), S) is denoted by &,. The set ¥, (S),,, is
called the set of germs of cohomology classes of dimension / along the
fiber X (¥). Now ¥y (S),) 1s an 0, y-module. For if g,€0,, we have a
representative g € I (U) for some open neighborhood U of y. Then goy e
eI(y~" (U)). If &, €y, (S), and U is sufficiently small we can find a
representative £ € H' (y ™' (U), S) for &,. Then we put g, &, = ((g 0 ¥) &),

Now we form ;) (S) = U Y, (S)(,, where we introduce a sheaf topology.
yeY

A base of the open sets are {&, :ye U} for Ee H (Y~ ' (U), S). If
£e H' (X, S) then the map y — &, is a cross-section in ¥, (S). We call it
the direct image of £ and denote it by y/;, (£). The sheaf y;, (S) is the direct
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