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THE COHERENCE OF DIRECT IMAGES

by H. Grauert

Introduction

The coherence of the direct images of coherent sheaves was treated in
the paper [1]: H. Grauert: Ein Theorem der analytischen Garbentheorie

und die Modulräume komplexer Strukturen {Pub. Math. IHES 1960, pp. 5-64,

corrections 1963). This paper deals with the most general case and its

technique is very difficult. The main point in the proof is the Hauptlemma
on page 47. Here a proof of this Hauptlemma in the case of regular families

of compact complex manifolds and locally free analytic sheaves is given.

Although this special case is easier than the general, the ideas are practically
the same. Therefore these lecture notes of some talks given by H. Grauert,
Helsinki 1967, may lead to an understanding of the general proof. In these

notes only the Hauptlemma is proved. The proof of coherence is omitted.
This part is more formal and can be done like in [1] on p. 55. See [1] for
applications of the theorem.

A detailed presentation of the proof in the general case is given also

by Knorr [2].

COHOMOLOGY THEORY

In this paper we use Cech cohomology. We shall briefly show how this
cohomology is defined. In the following discussion X denotes a connected
complex analytic manifold, (9 is the sheaf of germs of holomorphic functions

and S a sheaf of 0-modules. Let II { C7t } l6j be an open covering
of X. We put U. U, n n U.. We consider cochains of order /

l0 " I 0 Ll

with values in S. Let us put Cl (II, S) { ç } where £ denotes a full collection

of crossections t over all U, We always assume that çl0 Ll l0 ••• ll J l0 ••• '/
is anticommutative in its indices. In the system { Cl (U, S)} we have the



— 100 —

usual coboundary map <5: C1(U, 5") -> (U, which makes the
system a complex. We put Z1 (U, S) Ker <5 c (it, S) and Bl S)

5 (C'~ 1 (II, Sf).The I —th cohomology group H1 (il, S) with respect to the

open covering 11 is Z' (U, S)/Bl (U, S). An open covering 33 { Vv} veN

is finer than an open covering U { Ul } lifthere exists an index map
t : N -* J such that Vv c C/i(v) for vIt follows that an element of
r (Ur(v0)... T(v,)j S) can be restricted to a continuous crossecb'on over

Kg...>y In this way we get a map t* : C' (II, S) -> Cl (33, S). The following
diagram is commutative:

X*

CZ(II,S) -* CZ(33,S)
01

T*
01

Cl+iQX,S) -> CÏ+1(®,S)

It follows that we have a map t* : Z1 (II, S) -a Zz (35, S). Let us put
Zl (X, S) u Zl (U, S)9 where U runs over all open coverings of X. In

It
Zl (X, S) we can introduce an equivalence relation » as follows : Let
êi e Zz (U, S) and £2 e Zz (U1? S). We put « Ç2 iff there exists U2 such

that U2 is finer than It and VLX and ^t\U2 — £,2\&2 e Bl (U2, S). Here we
have put £V|U2 (£v) where t* comes from an index map tv: XI2

-> 11,11!. It is easy to check that the equivalence relation defined on Z1 (X9 S)
is independent of the index maps. Now H1 (X, S) is the set of equivalence
classes in Zl (X, S). Because Cl (U, *S) is a module over the ring I (X) of
holomorphic functions on X it follows that H1 (U, S) and H1 (X, S) are
modules over I (X). We have a natural homomorphism H1 (U, S)

-> H1 (X, S). Let now X' c: X be an open subset. Then X' is a complex
analytic manifold. We put S' S\X' and tl' It n T {L/tnX7 }
and obtain an open covering of X\ The restriction of crossections gives a

homomorphism y : C1 (H, S) -> C1 (U7, S7) which commutes with ö and

any index map t. Thus we obtain restriction homomorphisms : H1 (tt, S)

-> H1 (II7, S7) and (Z, S) -> (X7, S7).

Stein manifolds

A complex analytic manifold X is a Stein manifold if: 1) X is holo-
morphically convex, i.e. if D (xv)rf is an infinite discrete set, then there
exists fel(X) such that |/(D) | sup |/(xv) | is infinite. 2) X can be
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