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THE COHERENCE OF DIRECT IMAGES

by H. GRAUERT

INTRODUCTION

The coherence of the direct images of coherent sheaves was treated in
the paper [1]: H. Grauert: Ein Theorem der analytischen Garbentheorie
und die Modulrdume komplexer Strukturen (Pub. Math. THES 1960, pp. 5-64,
corrections 1963). This paper deals with the most general case and its
technique is very difficult. The main point in the proof is the Hauptlemma
on page 47. Here a proof of this Hauptlemma in the case of regular families
of compact complex manifolds and locally free analytic sheaves is given.
Although this special case is easier than the general, the ideas are practically
the same. Therefore these lecture notes of some talks given by H. Grauert,
Helsinki 1967, may lead to an understanding of the general proof. In these
notes only the Hauptlemma is proved. The proof of coherence is omitted.
This part is more formal and can be done like in [1] on p. 55. See [1] for
applications of the theorem.

A detailed presentation of the proof in the general case is given also
by Knorr [2].

COHOMOLOGY THEORY

In this paper we use Cech cohomology. We shall briefly show how this
cohomology is defined. In the following discussion X denotes a connected
complex analytic manifold, @ is the sheaf of germs of holomorphic func-
tions and § a sheaf of @-modules. Let U == { U,} ., be an open covering

of X. We put Uﬂo —y = UL0 N N U‘z' We consider cochains of order /
with values in S. Let us put C* (U, S) = { & } where & denotes a full collec-
tion of crossections QO ..y OVer all ULO ey We always assume that ¢

[,0 “es l’

is anticommutative in its indices. In the system { C' (U, S)} we have the
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usual coboundary map 6 : C'(U, S) - C'** QU S) which makes the
system a complex. We put Z' (U, S) = Ker § < C' (U, S) and B' (U, S)
= 6 (C'""' (U, 8)). The / — th cohomology group H' (1, S) with respect to the
open covering U is Z' (U, S)/B' (U, S). An open covering B = {V,}
is finer than an open covering U = { U, } ., if there exists an index map
t: N — Jsuch that V, = U,,, for ve N. It follows that an element of
F(Ut(‘,o) RIRTORT S) can be restricted to a continuous crossection over

VVO vy In this way we get a map t* : C' (U, S) » C' (B, S). The following

diagram is commutative:

¥

C! U, S) » CI(Q}, S)
(SJ, o)

Cl+1<u, S) - wH-l(Q},S)

It follows that we have a map t*: Z' (U, S) - Z' (B, S). Let us put
Z'(X,S) = u Z'(U, S), where U runs over all open coverings of X. In
U

Z'(X,S) we can introduce an equivalence relation = as follows: Let
&, eZ', S) and &, e Z' (U, S). We put &, & &, iff there exists U, such
that U, is finer than U and U, and & |0, — &,|U, € B' (U,, S). Here we
have put &,|U, = 7, ({) where 7, comes from an index map t,: U,
— WU, Ttis easy to check that the equivalence relation defined on Z' (X, S)
is independent of the index maps. Now H' (X, .S) is the set of equivalence
classes in Z' (X, S). Because C' (U, S) is a module over the ring 7 (X) of
holomorphic functions on X it follows that H'(QU, S) and H'(X, S) are
modules over I(X). We have a natural homomorphism H*'(Ql,S)
— H'(X, S). Let now X’ = X be an open subset. Then X’ is a complex
analytic manifold. We put §' = S|X’ and W =Un X' = {UnX"}
and obtain an open covering of X’. The restriction of crossections gives a
“homomorphism 7 : C' U, S) » C' (W, S") which commutes with § and
“any index map 7. Thus we obtain restriction homomorphisms: H' (U, S)
- H'QW,8) and H' (X, S) » H' (X', S).

STEIN MANIFOLDS

A complex analytic manifold X is a Stein manifold if: 1) X is holo-
‘morphically convex, i.e. if D = (x,)T is an infinite discrete set, then there
exists feI(X) such that |f(D)| = sup |f(x,)| is infinite. 2) X can be
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