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THE COHERENCE OF DIRECT IMAGES

by H. GRAUERT

INTRODUCTION

The coherence of the direct images of coherent sheaves was treated in
the paper [1]: H. Grauert: Ein Theorem der analytischen Garbentheorie
und die Modulrdume komplexer Strukturen (Pub. Math. THES 1960, pp. 5-64,
corrections 1963). This paper deals with the most general case and its
technique is very difficult. The main point in the proof is the Hauptlemma
on page 47. Here a proof of this Hauptlemma in the case of regular families
of compact complex manifolds and locally free analytic sheaves is given.
Although this special case is easier than the general, the ideas are practically
the same. Therefore these lecture notes of some talks given by H. Grauert,
Helsinki 1967, may lead to an understanding of the general proof. In these
notes only the Hauptlemma is proved. The proof of coherence is omitted.
This part is more formal and can be done like in [1] on p. 55. See [1] for
applications of the theorem.

A detailed presentation of the proof in the general case is given also
by Knorr [2].

COHOMOLOGY THEORY

In this paper we use Cech cohomology. We shall briefly show how this
cohomology is defined. In the following discussion X denotes a connected
complex analytic manifold, @ is the sheaf of germs of holomorphic func-
tions and § a sheaf of @-modules. Let U == { U,} ., be an open covering

of X. We put Uﬂo —y = UL0 N N U‘z' We consider cochains of order /
with values in S. Let us put C* (U, S) = { & } where & denotes a full collec-
tion of crossections QO ..y OVer all ULO ey We always assume that ¢

[,0 “es l’

is anticommutative in its indices. In the system { C' (U, S)} we have the
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usual coboundary map 6 : C'(U, S) - C'** QU S) which makes the
system a complex. We put Z' (U, S) = Ker § < C' (U, S) and B' (U, S)
= 6 (C'""' (U, 8)). The / — th cohomology group H' (1, S) with respect to the
open covering U is Z' (U, S)/B' (U, S). An open covering B = {V,}
is finer than an open covering U = { U, } ., if there exists an index map
t: N — Jsuch that V, = U,,, for ve N. It follows that an element of
F(Ut(‘,o) RIRTORT S) can be restricted to a continuous crossection over

VVO vy In this way we get a map t* : C' (U, S) » C' (B, S). The following

diagram is commutative:

¥

C! U, S) » CI(Q}, S)
(SJ, o)

Cl+1<u, S) - wH-l(Q},S)

It follows that we have a map t*: Z' (U, S) - Z' (B, S). Let us put
Z'(X,S) = u Z'(U, S), where U runs over all open coverings of X. In
U

Z'(X,S) we can introduce an equivalence relation = as follows: Let
&, eZ', S) and &, e Z' (U, S). We put &, & &, iff there exists U, such
that U, is finer than U and U, and & |0, — &,|U, € B' (U,, S). Here we
have put &,|U, = 7, ({) where 7, comes from an index map t,: U,
— WU, Ttis easy to check that the equivalence relation defined on Z' (X, S)
is independent of the index maps. Now H' (X, .S) is the set of equivalence
classes in Z' (X, S). Because C' (U, S) is a module over the ring 7 (X) of
holomorphic functions on X it follows that H'(QU, S) and H'(X, S) are
modules over I(X). We have a natural homomorphism H*'(Ql,S)
— H'(X, S). Let now X’ = X be an open subset. Then X’ is a complex
analytic manifold. We put §' = S|X’ and W =Un X' = {UnX"}
and obtain an open covering of X’. The restriction of crossections gives a
“homomorphism 7 : C' U, S) » C' (W, S") which commutes with § and
“any index map 7. Thus we obtain restriction homomorphisms: H' (U, S)
- H'QW,8) and H' (X, S) » H' (X', S).

STEIN MANIFOLDS

A complex analytic manifold X is a Stein manifold if: 1) X is holo-
‘morphically convex, i.e. if D = (x,)T is an infinite discrete set, then there
exists feI(X) such that |f(D)| = sup |f(x,)| is infinite. 2) X can be
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spread holomorphically, i.e. for any xe X there exists fi ... fnel(X)
such that x is an isolated common zero of f; ... fy.

Let X be a complex analytic manifold. A Stein covering U = { U, } s
of X is an open covering of X such that every U, is Stein. We shall often
use the following result:

Leray’s Theorem: If U is a Stein covering of X then H t, S)
— H'(X, S) is an isomorphism for every coherent analytic sheaf S.

The isomorphism between H' (U, S) and H' (X, S) means the following: If
¢ e H' (X,.S) there exists & e Z' (U, S) such that ¢ maps into ¢ under the
natural homomorphism Z* (1, ) » H' (X, S) and moreover if & € Z' (1, S)
js mapped into zero in H' (X, S) there exist 7 € C'~* (U, S) such that £ = dn
in C' (U, S).

DIRECT IMAGES OF SHEAVES

Let X and Y be complex analytic manifolds. Let y : X — Y be a
holomorphic map and let S be an analytic sheaf on X. Now X 1s fibered by
the fibers X () = ¥~ ! (») for y € Y. Let U be an open neighborhood of a
point ye Y, then ¥V = ' (U) is an open set in X. Hence V is a complex
analytic manifold and the restriction of S to V gives an analytic sheaf on
V. We can now define H'(V,S). Let us put H, = u H' (y ' (U), S)

U

where U runs over all open neighborhoods of y in Y. In H, we introduce an
equivalence relation as follows: ¢, € H' (y~' (U)), S) and ¢, €
H' (Y~ (Uy), S) are equivalent iff there exists U = U (y) in Y such that
Uc U nU,and &y~ (U) = &Y™ (U) in H (Y~ (U), S). We let
Y1y (S)(,, denote the set of equivalence classes in H)l,. The equivalence
class generated by £ € H' (' (U), S) is denoted by &,. The set ¥, (S),,, is
called the set of germs of cohomology classes of dimension / along the
fiber X (¥). Now ¥y (S),) 1s an 0, y-module. For if g,€0,, we have a
representative g € I (U) for some open neighborhood U of y. Then goy e
eI(y~" (U)). If &, €y, (S), and U is sufficiently small we can find a
representative £ € H' (y ™' (U), S) for &,. Then we put g, &, = ((g 0 ¥) &),

Now we form ;) (S) = U Y, (S)(,, where we introduce a sheaf topology.
yeY

A base of the open sets are {&, :ye U} for Ee H (Y~ ' (U), S). If
£e H' (X, S) then the map y — &, is a cross-section in ¥, (S). We call it
the direct image of £ and denote it by y/;, (£). The sheaf y;, (S) is the direct
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image sheaf of S'of dimension /. Our main problem is to decide whether i ,,(S)
is a coherent analytic sheaf of ¢y-modules if S is a coherent analytic
sheaf on X.

A VERY SPECIAL CASE

We shall consider a special case where our main problem is easily solved.
Let X, be a compact analytic manifold of pure dimension m — n. We put
E"(po) = {(ty .. 1,)€C"; | t;]| < p} ). Here py = (o} ... py) is a fixed
n-tuple of strictly positive numbers. Let X = E" (py) X X, and X (p) =

= E"(p) X X, for p < p,. We see that X is an analytic manifold of pure
dimension m. Let Y : X — E" (p,) be the projection map. Now X is fibered
by the fibers Yy ~' (1) = X (1) = {t} X Xy, = X, for € E" (p,). We take
the sheaf Sto be S = (q€),. With these notations we can state the following.

Theorem : The direct image sheaf V(;, ((q€¢)x) is a coherent sheaf of
@'En(po)—modules for every [ > 0.

Proof. Because X, is a compact analytic manifold we can find a finite
Stein covering U = { U, ... U,. } of X,. Let us put U = E" (py) X U
then we see that fl = {U1 .. U } is a Stein covering of X. Let =
= { ELO L} E C! (1AI, (q0)x). Now ¢, is a g-tuple of holomorphic

functions on E” (py) X U,v0 ... Hence chO .., admits a Taylor series of the

form é"O ven Y - Z é(v:)) sy (Z‘/IOO)‘ \Vhere ¥ = (vl LA n) l Vl - V +
jv|=0

+ ... = v,and (t/p)" = (t;/p)"t ... (t,/p,)'". The uniqueness of a Taylor

series shows that {f(;;) ..., } is an alternating cochain over . Putting &, =
{ éﬂ‘(’)) Ll} e C' (U, (q0)x) we may write & =) &, (#/p)". Introducing the map
A

(v) : & = &y we get a commutative diagram of the form:

€ (1, (g0)x) — C** (I ,(q0)y)
()} L

o

C! (u: (q@)xo) - C'™! U, (q@)xo) .

We now need a theorem of Cartan-Seire: Let X, be a compact analytic
manifold. Then, for any coherent analytic sheaf Sthe set H? (X,, S) is a finite
dimensional vector space for all p > 0.
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Using this theorem we conclude that H “( X, (q(O)XO) has a finite base

b, ... b,. By Leray’s theorem we also have H' (U, (¢0)x,) = H'(Xy, (90)x,)-
Hence we can find b, ... b, € Z' (!, (g0)y,) such that b, maps into b, under
the natural homomorphism Z' (U, (q0) XO) — H'(X,, (q0) Xo)' We now

introduce a pseudonorm in C' (U, (¢0) X()) as follows:

Norm definition. Let ne C'(U, (q(Q)XO). Then we put ||7]| =

= (Lil}gl)llmo Lolland|ln, ol = max sup [no(U, ....)|, where,n, ., =
=1y, ...,n,)- Notice that it may happen that || || = -+ c0. Let B == {V; ... Vs}
be an open covering of X,,. The covering 8 is much finer than U = {Uy...Us}if
V. < < U, holds for every .. We write B < i in that case. Let us now choose

L

Stein coverings B; and B such that B, < BV < . In C' (B, (q(O)XO) and
C! (231,(q(9)X0) we introduce a pseudonorm just as in C* (U, (q(O)XO). If
e C U, (q(O)XO) we have defined ¢| B e C' (D, (q(D)XO). It follows that
|¢] 8| < o because V, ., =<U, ... Let us now choose Ee

Z'(B, (q(O)XO). Since by ...b, e Z' (U, (q(O)XO) constitute a base of H'(X,, (q(O)XO)

it follows from Leray’s theorem that ¢ = ) a, bvl% + 6y where a,e C!
and ne C'71 (B, (q(O)XO). Now we need the following.

Lemma: There exists a constant K such that |a,| < K||¢|| and
] By || < K] €.

The proof follows because by the Banach theorem the map (ay,...,a,,n) —
¢ of the Fréchet spaces C"x C'™1 (B, g0, onto Z' (B, (q)0y,)) is open.

Let &eC'(N, (q(Q)XO). We can extend each ¢ ., eql(U, .. )

= E (o) X Uy ...p We get & e Z' (U (40)y)

obtained from ¢ by a constant extension. In particular we extend b, ... b,

A A

constantly to b, ...b,e Z' (U, (q0)x). Letb, ... b, be the images of b ... Db,
in the direct image sheaf ¥, ((g0)y). Let now &, € ¥4y ((40)x)(o, Where 0
is the origin of E"(p,). By definition we can find & e H' (X(p,),q0) with

constantly over U, |
g 10

0 < p; <<p, which maps into &,. Now U(p;) = {E"(py) X U} is a
Stein covering of X (p,). Hence Leray’s theorem shows that we can find

&e Z' (U (py), (q0)x) such that & maps into &,. Let us write & == Y & ,(t/p,)"
where ¢,,€ Z' (U, (q@)XO). Let us also choose 0 < p, < p,; and consider

& B(p,) = ¢, €Z' (B (p,),(q0)x). Letus write &, ==Y &* ,\(1/p,)". Obviously
we get ¢,y = (p2/p1)" &y | B. It follows easily that supv| é(:) | < 0.
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The previous lemma shows that &, = Y a,, b, + dny, where
e C'"™1 (B) with || n, | B, || < K| &5, || and |a,; | <

Let us put a, = ). a,, (tlp,)’ and n = n, (#/p,)". We see that
17 e Cl 1 (% (p2)) and a,el(E" (pz)) An easy computation gives
61 l ﬂ) (p2) = > a, b,l | % (p,) +06n. It follows by definition that

A

& = ) a, b,l We have now proved that bl ... b, generate V,y ((g0))

at the origin. It follows in the same way that bl ... b, generate ¥, ((q@)X)
for every te E" (p,) because it is enough to do everything in a polydisc
around 7. Now we also prove that the sheaf ¥, ((q0)y) is free, i.e. there

A A

A
are no relations between b, ... b, at any point. Say for example that ¢, b, +

+ ... +a, b, = 0aty, ((g0)x)e, where g, are germs of analytic functions
at the origin in £” (p,). Hence 410y -+ a,b,=0in H (X (p), (q0)y)
for some p > 0 w1th a, € I(E" (p)). It follows that Z a, b : 5/5\ in X (p)
for some é eC? (11 (0), (q0)y). Take a point te E" (p) where some
av # 0. Now we see that on { #} X X, we have c~zl (t)b; + ... -+ c;r ()b, =

=0¢| {1} X X,eC (U, (q0)x,). This gives a contradiction to the
fact that b, ... B, are a base of H' (X, (q(O)XO).

MEASURE CHARTS

Let X be a connected complex analytic manifold of dimension m.
Let F be a holomorphic vector bundle of rank g on X and F the sheaf of
holomorphic crossections in F. This sheaf is locally free. A regular proper
holomorphic map ¥ : X — E" is given. Let us put X, = ¢~ ! (0). Now X is
a compact analytic manifold of dimension m — n. We now introduce
special open coverings around X, in X.

Definition. A measure chart %" = (W, @, ©, p) is a quadruple satisfying
the conditions:

1) W< Xisopen and W = W n X, is Stein.

2) &: W — E" (p) X Wis a biholomorphic map such that the following
diagram is commutative:
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A D
W — E"(p) x W
VAV
E"(p) .

Here 7 1s the projection map.

A

3) O: F[W LW % C?is a trivialization of F on W.

If % is a given measure chart on X we can identify the sheaf ( W K ‘ W)
of ¢ y-modules with the sheaf (W >< E"(p), ¢ O) using @ and ©. If U = W

is open and p’ < p we put U(p)—clj (U x E"(p")). Hence if

sel (U (p"), F) we can identify s with an element of I’ (U X E"(p"), q0).
We shall simply denote this element of I' (U X E" (p’), ¢ 0) by the same

letter s. Now we can expand s in a Taylor series: s = Y s, (¢/p')” where
[vi=0
s, eql(U).

Definition of a norm. When s el (U(p’),F) we put || s]|| =

Strictly speaking the norm || s || is taken with respect to the measure
chart /.
It is not hard to see that for every point x € X, there exists a measure

A

chart #~ such that x € W. In particular we can cover X, by finitely many

L*

measure charts #', = (W, ®,0,p),1.e. Xy € < u W, We remark that it
1

L*

follows that X (p) =y~ ' (E"(p)) € = u W, for some p > 0 with p <p,
1

because y is a proper map. The collection % = { ¥, } Y is called an atlas
around X,. From now on #" is a fixed atlas.

Measure coverings. We shall define measure coverings with respect to
the given atlas %" above. If Uc W, is open we put (U) (p) =

L

= &, (U x E"(p)) when p < p,. We see that (U), (p) = W, and (U), (p)
is Stein if U js Stein. Let W = { U, }"; be a Stein covering of X, with U, = < W,

L

for each 1. Let p > 0 with p < min p,. We put U, (p) = (U), (p). We

see that U, (p) = = W, and U, (p) are Stein. It is now required that U (p) ==

et ey eyt e
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= { U,(p)} is a Stein covering of X (p). We say then that i (p) is a
measure covering of X (p).

Admissible refinements of measure coverings. Let U (p) and U* (p)
be two measure coverings of X (p). We say that U* (p) is an admissible

refinement of U (p) if the following conditions hold:

1) U, = < U, for each ..
U, . ,=U, 00U weput(U,  )=o,""(U,. ., <E"(p)
for each ve{iy...t; }. It is now required that (UTO“M)v < (U,,...,)u for

all vy ue{ig...t; }.

3) UT o=U_n..n U:; (- (ULO”M)# for each pe {1 ...1, }.

0---ta L0

EXISTENCE OF ADMISSIBLE REFINEMENTS OF MEASURE COVERINGS

Existence Theorem. For every fixed integer s we can find, for some
p >0, asequence U, <« U,_; < ... < U; < U, of finer measure coverings
of X (p) each of which is an admissible refinement of the following.

Proof. We first construct a measure covering of X (p) for some
p <minp.LetUy = {U,} ', be a Stein covering of X, such that U, = = W,
for ve{l,..,.¥}. Choose a fixed p, < minp,. Now the open sets
®,~" (U, X E"(py)) cover X, and hence they also cover X (p) for some
sufficiently small p. Hence U, defines a measure covering of X (p). It is also
clear that U, defines a measure covering of X (p’) for each p’ < p. Let us

now construct ;. We let A* = { U’ }{ be a Stein covering such that
U, = < U, always holds. Now we can find p; < p such that { ﬁ* (p) =
= &1 (U, X E"(p,))}}y cover X (p;). Hence 11 (,01) and u(pl) are
measure coverings of X (p,). But we do not yet know if u (pl) < l[ (p1)-
We claim that if p, < p, is sufficiently small then 11 (p2) < 1I (p,). For

suppose this is false. Say that 2) fails for 11 (p,) and 11(/)2) when
O < P2 \ P1- Hence d5v ! (Uz,o...Ll XEn(pZ)) @u—_l (UL()...LA E" (pZ)) arc

non empty for suitable indices while p, — 0. Choose a point x, from each
of these sets. Because x,€ X (p;) which is relatively compact we may

assume that x, — x,. Obviously we get x, € U by ULO.__L ,» & contradic-
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tion because U, . < Uy 0 ... O GE < U, In the same way we can
prove that condition 3) is satisfied if p, is sufficiently small and the theorem

1s clear.

GENERAL THEORY

Let G be an analytic manifold. We put G=GXxXE" (pl) where p; 1s
an n-tuple of posmve numbers Let 7: G — E" (py) and ?B G — G be the

projection maps. G’ c G denotes an open subset and G* = G NG x{0}.
The set G* can be identified with an open subset of G. We denote by

o: G* X E"(p,) — G* a biholomorphic fiber preserving map, i.e. 7 o o0 = 7*
where n*: G* X E" (p;) — E"(p,) is the natural projection. Let p < p, =

= yp; < py where0 < y < 11s a fixed number. We put G{p) = G x E" (p).

If fis a holomorphic function on G (p) we write /= Y a,(¢/p)” with
a, € I(G). We define the norm || /||, of f by || /||, = sup { sup |4, (G)|}.

If fel(G (p)) we see that fo a is a well defined function on G* X E" (p)
because o is fiber preserving. We define || fo «||, using G* instead of G as
above. We have the proposition:

Proposition 1. There exists a constant K such that || fo o ||, < K||f]],
where K = K (p,) is independent of p < p,.

0

Proof. We write f== Y a,(t/p)” with a,e I(G). Now we get f 0 o =

vl =0
=) (a,0 P o «) (t/p)’ because « is fiber preserving. Since P (G*) = G

we get |a, o P(GY)| <]|a, (@] <||f]],, Now a,0 PBoa admits
a Taylor series: a,0 Poa=) C,, (t/p)* with C,,eI(G*). Since
l 2. Coi (t/p)* l < ”pr in G* X E"(p;) and p < p, = yp; Cauchy’s in-
equalities give us | C,; (G*)| < || f||, »'*!. Letus puth, = » C,,. We get

v+Ai=p

16,6 <117 ], £ =117, (1 =™ = K[| 7]}, Now we can
wiite f o =300 Boalp) =¥ Cp (lp) (W) =T b, o). By

definition we haye | foall,= %up l b (G*)| K|/,

Let us now consider h = (hvu) which is a ¢ X ¢ matrix with h,, el (G).

The h,, are also assumed to be bounded on G.
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Proposition 2. Letf = (f; ... /) € ¢I(G (p)). Then || h () ||, < K || £]|,-
As before p < p, = yp, < p, and K only depends on p,.

Proof. We have h(f) = (g; ... g,) with g, :Zhwfy. Let us write

Z Ay (t/p)*. By assumption [ Figgs (G) ] < M for some constant M and

hence we have, by Cauchy’s inequalities,

a,,, (G) | < My'*!. Let us also

write f, = Z b.; (t/p)*. By definition sup | 6,2 (G) | = || £]|,- Now we get
- Z Z av,u)» byl (l‘/p)ll B ZC‘,A(Z/[O>1 Where Cvi —'Z Z avuil bu/l‘ .
u /ll 2 i ]. +/1 =

We get easily | C,, (G) | < gM || f][,(1—y)"" = K[| {]|,- Hence |h@ ||, =
= Sup Hgv ”p — Suf ‘ Cys (G)} <K” f”p

We shall now apply these two propositions to our situation. Let
G*cGc W < X,. Here G* and G are open sets and W, .= comes

L. Ly

from the measure atlas #. As before p < p, < p, = min p. We are
given v and " from { 1, ..., 1; } and the following inclusions are assumed:
A A

(G (p1) = (G), (py), (GF); (p1) = = W, (G), (py) = = W,
The following theorem is very important.

Theorem I. Let SeT ((G), (p), F). Then || S|(G*), (p) ||, < K|| S|].-
K depends only on p,.

Proof. We have the following diagram:

Dy
(G),(p1) = G xE"(py)
injection 'T 4\ o
D '

(G*), (p1) » G* X E" (P;)

o being a fiber preserving holomorphic map. We identify S] (G*), (p)
with an element of g/ (G* X E" (p)) using the trivialization of Fin the chart
# .. Call this element S*. Also § itself is considered as an element of
gl (GXE" (p)) using the trivialization in the chart # . Now we have S* =
== h (S0 «) where h is a ¢ X g matrix. The elements of h are holomorphic

functions defined on @, (W, ) o G* X E" (p,). Hence the elements of h
are bounded on G* X E" (p,). It is now obvious how we can use 1) and 2)
to finish the proof.

We shall need one more general result. Let G be an analytic manifold.
G is assumed to be Stein and R* = { Uy, ..., Ux } a Stein covering of G.
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The set G* = G is open and R** = { V,, ..., V,» } an open covering of G*
such that ¥, « <« U, for ve {1, .., v*}. We have:

L

Cartan’s Theorem. There exists a constant K such that if ¢ € Z' (R*, ¢0)
then ¢&| R** = 6y where ne C'™' (R**, ¢0) and In|| <K| €] for
[ > 1.

This is a simple consequence of Theorem B and Banach’s open mapping
theorem.

Now we apply Cartan’s theorem. We keep the notations as above.
LetG= G X E"(p) and put R* = { U, X E" (p) }. Now R*is a Stein

covering of G. Let G* = G* X E"(p) and R** = {V, X E"(p) }. Let
 Ee Z'(R¥, q0) and write & =Y &, (¢/p) with &, e Z' (R*, q0). We

assume [ ‘< . Now Cartan’s theorem gives

PN
oy | R¥* = o, with n,e C'"Y(R*, q0) and ||n,|| <K[ &) | < .

It follows thatn =Y n,(¢/p)” is well defined in C'~'(R**, g0) and by

definition we have || ; |, < K| /g: I, -

SMOOTHING

We are given a sequence of admissible refinements of measure coverings
in X(p,). Here p; < p, = min p asusual. Let [ beafixedinteger > 1. We are
given B* « B'= B3, <« B3, 1 <. <B; <P < VP<cUW < U=U; < ...
< U, < W. Hereitis also required that (B, 1, U, 1) < (B,, U,); (V*, U*) <

< (B, W) and (By, Uy) < (B, U’). These extra conditions mean: 1) (/} (v,f;“ )

B %

A

(v+1 )
@ VLLO )"'Ll < (Ul\:) el
(UYL AT

(v) . . .
N VL), for each e {1, ..., i, } and

) ( .. . ]
...v_l)jc(U i\; - ﬂV L‘:))...Ll)f fOI' aﬂ l)Je{lO: ZK)L()?"‘LI}'

A
Recall thatall operations are done with respect to p;. Letusput R, =
N

A A ANA
_gm ™ ; ™)
Uty ..i,0V. ... Weconsider elements Cig.rigrgeon €L (R i ig s B)-
A A
Now we take a full collection & = {¢&, 0--rif 1g-.1,  OF such elements which is

anticommutative in { iy, ... % } and { i, ..., 1, }. In this way we get a double
complex C,**. Here § : C,** —» C}*1*and 9 : C** — C**! are the usual
coboundary operators.

NorMm IN C,B*: Let &£ e C,0%; we put
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A A
H 6 ”p = i,(io,“l,’gciz,, { ” fio...ik Lo "Lk (Rt(g—{—lli LO...LK)i(p) Hl with ie {fo,...,
i.}}. Herep >p, and R(”f,)c,bo o = UL AVET ) and |||, is taken with

respect to the chart #7; as usual.

SMOOTHING LEMMA Let ;c > 0. There exists a constant K such that:
If é e C F* with 65 = 0 and |[ é |, < o then we can find ;7 e C% ' such

that é| CckY = 811 and || 7], < K| f |, Here p < p, = yp,; with
0 <y < 1 and K depends only on p,.

Proof. Let us fix iy, ..., i, in the following discussion. Let G = U(v+ ”lk

and put G = (G); (p,) for some ie {1, .., } which is also fixed now.
Now G is Stein in X, and G is Stein in X. We put R* = G n B, , whichisa
Stein covering of G. Also R* = {(GnAV," "), (py) )=y, is a Stein

covermg of G Let f == {f } Now we look at the elements of

g L0
{Zjlo P —510, eZ"(R* F). Here iy, ... 7, is fixed as above.

A

We get a cocycle because we have assumed that 0 = 0. More precisely we

have considered the restriction of &, to R*. We must verify that

0> "‘ik’ LOs+ by
this restriction is possible.

Verification : By definition of Z* (R*, F) we have to look at sets of the
following type: (these are the sets where the cross-sections are defined)

GV ED) o (GaV D), —(GmV("“) Ji= RGP, ) Now
by2)wehave(R(”“.)lkLO )cm(R(V) o )i © U ) N n(V(”))
—R(V) . QED.

g ro”

Nowweput G* = UG "), = = G. Welet R = {(G*V 2N} ot e

A

The system R** is a Stein covermg of (G*),. We are in a good position now

For we are given¢; ; € Z" (R* F). Here R* 1s a Stein covering of G

A

and G is a Stein manifcld. We are working in the chart #”; where the usual

identifications are used. Hence we arrive at the following situation: G is

a Stein manifold with a Stein covering R* = B,,, 0 G. Also G* c = G

and R** = B,,, n G* is a Stein covering of G* such that R** < = R*.
A

The cocycle ;.. ;, is now considered as an element of Z* (R¥, g0) which
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we simply call &; ;. again. Now we apply the result after Cartan’s theorem.

Hence we can find a constant K such that for every p << p, we get y e
gl (}\Q**, q0) and || 7|, < KH& Hp with 8;1 ——2 i But this
means precisely that we can find 1710 i, €C7 1 (R‘w (p), F) such that
| ’;\io---ik ., < K || 510 i |l With 510 = omo . We have only

constructed ;. ; using a fixed i € { i, ..., i }. Now we must let (i, ..., )

vary. For each (i, ... ;) we choose some i which only depends on the

A

unordered (k--1)-tupel (i, ..., i) and construct an element Mig....ip as

above. Now we can restrict everything to C*53".

Verification : Consider a set where cross-sections over chr! have to be

defined, i.e. a set U(V“" V(”f_) . But by 1) follows U("+_3_‘) V("”) c
(R(v+2)

gt for each i€ {ip,.., 1, }. This inclusion shows that we

A

get a well defined element 11 € C"v+3 by restricting the elements #; or i 1O

ch 5l We find that Zj ] Ck v+3 = 8;1 now. The norm inequalities are not

obvious, but recalling how # is constructed here it is seen that we can apply
Theorem I to obtain the required estimate.

SMOOTHING THEOREM There exists a constant K such that If E €
eZ’ (% (p), F) with || 5 |, < 0 then we can ﬁnd 6” € Zl (11 (p), F) and
n e C'” 1(‘13 (p). F) for which é* | B (p) = [Q?’ (p) +511 and Hé* IP
and || /1; |, <K 2 ||,- Here p < p, < p, and K only depends on p,.

Proof. Before we can use the double complex { C*;* } we must introduce
two “ e-maps”. To define the e;-map, let Z** < C** consist of all
¢ € C* such that 6¢ = 0¢ = 0. Now we shall define the &,-map : ¢

Z' (B, F) - Z%. A section belonging to an element of C%' is defined on some

A A A A
set UD V.. <V where sections of elements of Z' (B, F) are

D) VR

defined. Hence we get a natural restriction map &; which also maps cocycles

into cocycles. It is easy to verify that || & (&)||, < K| €]|,- Theorem I
can be used because (U}’ n V(Llo)...”)i c (V(f(’)) ..y for every i and every

t € { tg ... 1, }. Recall that the norm in Z' (B, F) is defined with respect to
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23 here The g,-map ’: we shall construct a map &,: Z43) — Z' (U, F).
Let éj = {510 o J EZ. Hereé is defined on R“’” Because

TN ipo”
66 = 0 we see that the elements 5 o dpig
U V(3L’)covers X (py). If we put ¢, (f)io...il = ¢

=1

are independent of 1,. Now

A
(31) (31)
0---i1°to ln D ig...ig a V Lo

A
then we see that 82(5),0 ;. 1s a well defined section on U(:”) In

t ig...i"
thls way we obtain e, (f)eZl (11 F). Here 82 (Zj) 1S a cocycle because
56 == 0. Now we prove that || ¢, (é)Hp K|l 5 |,

Veriﬁcaz‘ion A computation of || e, (é)H , involves the following:

£, (5) = { 6(2) ..i; - Look at some fi(oz__)_il in the chart #°; with i e { iy, ..., 7, }.

We write élo iy =

= Y a, (t/p)” over (U;;...il)i and compute s%p | a, (U,-t) oo gy) |

A computation of || £ ||, involves the following: Lookat & . ; over (U, ...;0

NV}); in a chart W, Here u is fixed. We write &, = > a,* (#/p)’ and

L*

compute sup |2, (Us,...;n V) |- Now U V] covers X,. Hence we would

103
1

. * . . *

have sup | av(L)(UiO...il NV | =supla, (Us....) |ifa,=a,“in Uiy ovriy O

v,L v

A
. . . . 2 . ¥ %
n V.. But this is obvious since é(io) ooty = Cig g (U 0 V), Hence

we bhave || &, @) ], < || €l
Now we are ready to start the proof of the smoothing theorem. We

let K denote a constant, which may be different at different occurences.

We also introduce a double complex { E’k’v" } using (B, B), 1.e. it is defined
just as the previous double complex was, using B-sets instead of U-sets.
We shall inductively construct the following elements:

ez’

A
= f
- éio...i\ﬁ " —vy

e >
<

}Ezv_q”, ’ = 0,...,l

U 2

v — {éio...ivﬁ 1Ol —y

A A

v—1,1-v
{7]‘0 Ay —1210uet) - v}ecsv

~ - NV—l,v—l. .
y — {nio...iv_:l?Lo...Ll_v} EC 3y > ¥ = 17"'91
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Ve Ol v = 1, (1= 1)

’))V = {yio...iv_l, Lo...Ll_v__l

and y, = {Vio...i,_1 J€ C'™1 (B3

The construction: ¢ e Z' (B (p), F) is given. The whole construction
is done using p instead of p, and we omit p to simplify the notation. We
put & (é) == ioe Z(” Now We apply the Smoothmg Lemma and get 111
such that 6r/1 = 50 with H 111 I, < K|| fo |, < KH 6 1|, Put él = 5;11
Obv1ously H 51 |, < < K|| ny ||,- Inductively we find 5nv = évﬂ and we
put év = 511v where nv are found from the Smoothing Lemma. Finally
we get & and we have || & ||, < K || &]|,- Now we define &, and #, as

follows. Put 50 = &, where &, € Z%' is obtained by natural restriction of

&o. Put ;v = (=" {&q...i,_1r10..y_, y Which is well defined with respect

to (Bs,, B,) by taking natural restrictions. Put Ev = 51;v forv=1,..,L
A computation shows that Ev_l == 8:7v when v = 1, ..., [. Notice that this
is trivial when v = 1. In the following discussion each 1;‘, is restricted to
(B5,, Bs,). We have 8(;1—21) = 0. Hence we find 1;1 — ;/7\1 = 6;1 by the

Smoothing Lemma. Now we define ;v such that a;v = 1;‘, -, — 5;%—1

A,

inductively. This is possible because 0 (7~1v—71vf5;v—1) = 0, for we have

~ A

M=) = by = by =007 = B = By -
—5(11v ; nv ) =0. We get finally y, leC’ >0 and then 5;1_1 €
eClgll’O. We have 6(111——111——5))1_1) = 0. Therefore we can put )7, =
— & (=11~ 871_1). It follows that 7€ C*~1 (Bs)) and 5y, = &, (6, ).
We have iz (E,)A: —AE [ B’ and for ¢, (21) = — :f\* and ; = 37, the required

equation {* = ¢ 4+ on. The estimates follow immediately from the construc-
tion and the Smoothing Lemma.

L’Enseignement mathém., t. XIV, fasc. 1. 8
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APPROXIMATION

We use positive n-tuples p, ... with p < p, < p; < p, < p; and p =
= 9P, P2 == Y01, P3 = ¥'P1> Pa = 7 p1. The n-tuple p; is defined as in

the smoothing theorem.
Definition :  Hi = { Ee H (X,, F|Xo) such that there exists U =

= U(0) in E" with e H' (y "' (U),F) and & | X, == & }. Serre’s theorem
gives dimg Hx < dim¢e H' (X, F|X,) < co. In the following discussion we

are given by, ..., b, in Z' (W (p,), F) such that b, ] Xos ... b,[ X, constitute
a base of the complex vector space H+. For this to be possible, p, has to be

chosen small enough. Here i’ is a Stein covering of X (p,) and defined as in
the smoothing theorem. We also assume that we are given a sequence of
measure coverings as there. Further we construct the sequence so that
there are still sufficiently many measure coverings in between B and 2.
These are denoted by .. We have U > U; » U, > ... > V. The n-tupel
p; is also fixed from now on and K always denotes (possibly different)
constants.

Approxinﬂation Lemma Let ¢ > O Then we can find p, such that:
If p < P2 and fe zZ! (11 (p), F) with || cf |, < oo (the norm is taken with
respect to- 111 (p)), then there exist al, .., € I(E" (p)) and 17 eC!™! (%(p), F)

r A A

suchthatg = ¢ — > a;b; — dnon %(p).Here f € Z’(‘B (p),F) and || f |, <
1
<cel|&||,and || a, ||, || n I, <K || &||,- K is a fixed constant.

Proof. We shall first prove some results which are needed later on.
Let SeF( 0ney (P F). Choose € { tg, ..., t; }. Now (U(%g*...q% c U

LO-..Ll
because U, < U. The operations are always defined with respect to p;.
We can now restrict S to (U (1)*_ .. (p). In the chart #°, we can write S =

= > a,(t/p)’. Here a,eql (U (1)*‘ ). Now the a, are extended constantly

and we get elements av el (U4)..),F) Letus put S, = q, | U(z)*_“q. We

claim that || S, ||,, < K]|| S ||,- For obviously || S ||, > |a, (U%)"...)|and
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we can use the Theorem I'to prove that|| S, 11,, <K || a,| (U .). (e || .=
~K|a,W )| < K]]S, QED. |
Let S, be defined using some other " €{ i, ...t;}. Then S, — S, €

el (U(z)*. » F). We claim that s, =S, Hp4 < Ky || S|,
o0 s—1
Proof. Define o, = Y a,(t/p)* and B, = > a,(t/p)* over

[2] =s |2]=0 ’ /
(U (1)*_ D (p). We do the same for v/ respectively and obtain o, and f over

(U(fg*'_'tl)t, (p). For the restrictions to (}(ng*...q we see that o, — o, =
~ (B~ B)). Hence we get ||, — o ||, < KO || oa—at ||, = K| o
B, < KO 1Bl K G IBlL, < K G LIA, <
<K@ ("' *|| §]|,- Here the norms are defined with respect to U} ot}

except || ||*and || S|, which are defined with respect to U})" . Now we look
at the difference (S, — S.) t*/p’ on (U(fg*_“”)u with ]v] =5, UE {1g,...t;}, and the
power series development with respect to W,. There is one term of order
s which is equal to the corresponding term of o, — o.. Therefore its norm is
< K@) (p) s H SHp. Moreover we have H S, (t/p)' = S. (t/p)" H "
< (")"* K || S||, where the first norm is defined with respect to U(f’o)*__, .-

For the sum ) of terms of higher order than s in the power series of (S, —
—S,) t/p"* we therefore get: || ) Hp <GPS K| S|, Hence we get

<y""-K|| S|, This proves our statement. We see that X is
independent of p, and S. The number y"" depends on p,only,soy”" K gets

_—
==

very small if we make p, very small.

Let ie Z! (11 (p), F) with é {E .y }- Choose t =1 (i, .oy 1)) @S
a function of the unordered (/4-1)-tuple. We now fix 1, ..., 1; and write

§=2¢,,..,- Weapply to S the method described above and obtain f(” =
= §,. We do this now for every i, ..., 1, and conmderém = { f%)m”_}
as an element of C' (i\I; (p,), F). Of course E(V) depends on the choice of
L= (19 1) here. Now we see that | gm e < 11200 Iy < K[ 1],

We also wish to estimate 55@) Because é R A (11 (p), F) we can use the

preliminary result on v and ' to obtain || 5f(v) o, < Ky || é -
We shall also need another result:
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]nduction Lemma : There exists nv e C! (II4 (p3), F) such that 5;7v =
550) Hp4’

Proof. The proof uses the assumption that v, (F) is coherent.
Because the coherence of direct images is proved by downward induction
on /, this assumption can be made. Moreover it is assumed that the main

5f(v) on 114 (p3) and || ’7v ”ps < K|

theorem is proved for dimension / - 1 already. Let us now put o = ¢,y €

e B! (U; (p,), F) and n, = Be C' (U, (p5), F). We have to prove the
existence of . We may assume that p, is so small that the main theorem
is valid for p < p, in the case of dimension / -+ 1. So there are cocycles
Wy, oy @, € ZTH (U (py), F) such that o=) C,w;+ oy, where C,e

e I(E"(p,)) and ne C'(Uy (p,), F). We have to assume that between U,
and I, there are very many measure coverings. The cross-sections ¥ ; 4 1, (®;)
give a homomorphism 70 — ;. ,(F) over E" (p,). Because Y4, (F)
is coherent the kernel 4" is coherent again. Over E” (p') with p; < p’ < p,
we find an epimorphism p0® — A". Denote by ny, ..., n, the images of the unit
cross-sections in p@. Write n; = (e;;, ,e;,) as an r-tupel of holomorphic

functions. The image of n, in I' (E" (p"), ¥ (1+1, B) is Y141y ( D, €1, @)
u=1

and zero. We may choose p, and then p; and p’ very small
Then it follows thatn; =) e, w, is a coboundary. If p; < p” < p’

there are cochains 7, € C' (U, (o), F) such that 61, = n,. Now (Cy, ..., C,) €

eI'(E"(p,), /). By the methods of sheaf theory we can lift this cross-

section to p@. Using a “ Banach open mapping theorem ” we see that the

map I (E"(p"), p0) — I" (E" (p), /") is open. This means here that we can

find holomorphic functions a, over E" (p;) such that C, =) a,e,;, and

H a; Hp3 < K max H Cu ”P' < Kmfx ” Cu Hp4' We get Z Cu P :’Z a5 €@y
u

= Y a;n, = (Y a,n,). This leads to o | C™*1 (U, (p3)) = 6 1+ Y axny).
The estimates requlred obv1ously hold. Q E.D.
Let us now put f(v) = é(v) n,€2Z (11 (p3), F). We can write f(v) | Xo =

=Y a,; b,1| X, + oy, over U.. Here a,; are complex numbers and y, €
e C'"'(Ug, F | X;). Cartan’s theorem and the result after that give the

estimates | a,,| < K[| &) [,y < K[ €[], and [[ 7, [|,; < K] &6y
< K|| ¢ ||, Here y,e C'~' (U5 (p3), F) has been obtained by a constant
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extension of y,. Let us now put f(lv) = &5y — 2 a,,b; — 0y, Here f(v) €
eC (117 (ps3), F). Using the previous estlmates and the fact that the b,l
are finite we find that || ED by <Kl lloe < K1 €]l

Now we also have é(,,) | Xo = 0. It follows that
1 EE 1, <y 118G Ml <2l K1 EL,-
Finally we put in {I; (p):
D = 3EL 1oy =

= 2 p)' =2 71v (t/p)" — Za,,(t/p)’ bz — (2, (t/p)")
=¢—n—2a;b, —dy.
Using the fact that the sum of the absolute values of the coefﬁcients in the
power series expansmn of ﬁ((lvg by (t/p) is smal]er than yp/y’ - K H f ||, and

that with respect to 7, 1s smaller than y”’ K| 5 ||, we find: || é(” I, <
<9l - K| €[], and H all, <v" K|\ 2|, and ||a]l, <K|| €[], We
take the restriction to % (p) and now £ =M ne Z'(B(p),F)is the desired

element. Of course we have to choose p, and then p, small enough, for
example let y"" < ¢/2 K and y < ¢)’/2 K.

MAIN THEOREM

There exists p, and a constant K such that if p < p, and 2 eZ' (ﬁ (p), F)
with H é ||, < oo then we can find ay, ..., a, € I(E" (p)) and 5 e
e (‘B (p), F) such thaté = Za,lb,l + énon%(p)wnh[[n[lpand][a |, <

< K|l

Proof. We have one constant K from the smoothing theorem. Now we
find p, with an ¢ in the Approximation Lemma such that ¢ - K < 1/2. We

A

shall use this p, and prove the theorem here. We are given & = ¢ €

Z' (U (p), F) with || £||, < co. The Approximation Lemma gives El—:—
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= 5 - Z aub/l - bh on % (p). Here ')’1E ol 1(% (), F)and” 51 Hp <
< & H é ||, Now 51 e Z (Q} (p), F). The Smoothlng Theorem glves 61

eZ! (11 (p),F) and 171 g =k (513 (p),F) such that 61 = 51 +5;1 on% (p). Here
| 7y ]|, and || &, ]|, <K|Ig1 Hp 1 ]] f ||,- Now we use 51 1nstead of

¢y as above and get: &, = 51 - 5712 Zazz ba - 5)’2- Here ” fz “p
and ||, || < % || & [l, < 47 || €|, and || azs ||, and || 3, ||, < ~—H )

Inductively we get: 2,,:2,1_1 — > a, b,x 5yn+511,,
<27 ¢ 27 || & ||, and || .||, and || 3, ]|, < 27"+ KHpr

forn =1,2,3,... A summation is now possible. We get 0 = é — ). a, b,l —
n,A

— 207+ 2 My We put a; = ) uss 1 = ), (=7,+n,) and the theorem

follows.
For the proof of the coherence the Main Theorem is needed in a weaker
and simpler form.

o llml, <

Main Theorem (*): There exists a positive n-tupel p, < p, and cross-
sections S, ..., S, €I (E" (p2), ¥ (1) (F)) such that any S= v, (8") eI (E"(p"),
Yoy () with & e H' (X (p’), F) can be written over E” (p) in the form S =

=Y a; S;withay, ..., a, e I(E" (p)). Here p < p, and p < p’ < p,.
~ 72 2T
Proof. Define S, =y, (b, | X (pz)) The cross- section S can be

Written in the form S =y, (f)W]thf eZ’(lI’ (p), F). We put
illl(p) Then 1 5 |, < oo and we have the representation ¢ =

> D>

=Y a, ]E),1 + 57; For the cohomology classes we get E = > a, b, and for the

images S| E" (p), this gives S|E" (p) = ¥y (?,‘) =Y a, S,.

The immediate consequence of this form of the Main Theorem is that
the stalk of y;, (F) at the origin (and hence at every point of course) is
finitely generated. However this is not yet the full coherence of ¥, (F).
Nevertheless, the Main Theorem above contains all that is essential, and the
rest of the proof is not difficult. We refer to [1, pp. 54-58], or to Knorr [2]
for details.
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