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Here L(z-a) is the Levi form ofp at the point a. Now, since p is strongly

plurisubharmonic, we can choose the coordinates so that L(z — a)

I z-a |2. Then we see that if is an eigenvector corresponding to an

eigenvalue < 0 of the symmetric matrix of the real quadratic form Re Q (z)

+ L (z), then i £ is an eigenvector corresponding to an eigenvalue > 0.

Hence the number of negative eigenvalues is < d, since the real dimension

of X is 2d. Thus the index of the critical point a is < d.

Now using Lemma 7.3 (b), we see that

Hr(Uß, Z) 0, (Vr >d).
From this it follows that

Hr(X, Z) =0, V > d),

because the singular cycles defining the homology groups Hr (X, Z) have

compact supports, and any compact subset of X is contained in some

compact set K with a corresponding Uß zz K.

A refinement of the above argument leads to the stronger (homotopy)
statement :

Any Stein manifold of (complex) dimension d has the same homotopy

type as a CW complex of (real) dimension < d. (See [6]).

Moreover, the Lefschetz theorem has an analogue in homology and

in homotopy [6]. The latter, for example, asserts that, if V, D are as in
Th. 7.1, then the relative homotopy groups nq (V, D) 0 for q < d.

Th. 7.2 has been generalised in various directions. It has a relative
analogue (relative to a Runge domain). Further, Th. 7.2 remains true if
X is any Stein space (with singularities) of complex dimension d, but the

corresponding cohomology statement is proved only for some other
coefficient groups [5, 7]. Note that in view of the use of Poincaré duality, this
does not lead to a Lefschetz theorem for algebraic varieties with singularities.
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