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Here L (z—a) is the Levi form of p at the point a. Now, since p is strongly
plurisubharmonic, we can choose the coordinates so that L (z—a)
= | z—a |>. Then we see that if { is an eigenvector corresponding to an
eigenvalue < 0 of the symmetric matrix of the real quadratic form Re ¢ (2)
+ L (z), then i{ is an eigenvector corresponding to an eigenvalue > 0.
Hence the number of negative eigenvalues is <C d, since the real dimension
of X is 2d. Thus the index of the critical point a i1s < d.

Now using Lemma 7.3 (b), we see that

H,(Ug, Z) =0, (yr > d).
From this it follows that
H,(X,Z) =0, (yr>d),

because the singular cycles defining the homology groups H, (X, Z) have
compact supports, and any compact subset of X is contained in some
compact set K with a corresponding U, > K.

A refinement of the above argument leads to the stronger (homotopy)
statement:

Any Stein manifold of (complex) dimension d has the same homotopy
type as a CW complex of (real) dimension < d. (See [6]).

Moreover, the Lefschetz theorem has an analogue in homology and
in homotopy [6]. The latter, for example, asserts that, if V, D are as in
Th. 7.1, then the relative homotopy groups =, (V, D) = 0 for g < d.

Th. 7.2 has been generalised in various directions. It has a relative
analogue (relative to a Runge domain). Further, Th. 7.2 remains true if
X is any Stein space (with singularities) of complex dimension d, but the
corresponding cohomology statement is proved only for some other co-
efficient groups [5, 7]. Note that in view of the use of Poincaré duality, this
does not lead to a Lefschetz theorem for algebraic varieties with singularities.
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