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Now o takes the form |
w —df =dz; nao. (6.23)

We distinguish the two cases k > 1 and k = 1. In the first case we get
from (6.23)
le N\ (SOC/ - 0 s

which implies that da’ = 0. Since o’ is a form of type ¢ — 1 >1, we can apply
once again Lemma 6.8 and get o' = d«”. Thus dz; A o' = d(dz; &),
and we get w = d(f'+dz; Aa”). This proves that the cohomology under
consideration is trivial for £ > 1.

Finally, in the case k = 1, o’ is a meromorphic function, independent
of z,, ..., z,. Thus by (6.23), @ = dy for some y if and only if in the Laurent
expansion of o the coefficient of z; ™! is zero. Thus the cohomology in
dimension 1 is generated by z, ~! dz,, which completes the proof of Theo-
rem 6.4.

7. LEFSCHETZ’ THEOREM ON HYPERPLANE SECTIONS

The Lefschetz theorem in the slightly more general setting proved by
Andreotti and Frankel [1], is the following:

Theorem 7.1. Let V be a submanifold of P" of complex dimension d
and let D be a hyperplane section of V (not necessarily non-singular).
Then there are natural isomorphisms

H*(V,Z) ~ H'(D,Z), (ygq<d-1),
and a natural injection
H*™Y(V,Z) - H* (D, Z).

Proof. X =V — D is a Stein manifold, since it is imbedded as a closed
submanifold of C". Now one knows that

H*(V,D,Z) ~ H{(X,Z), (7.1)

where the ¢ indicates cohomology with compact support. On the other
hand, since X is a topological manifold of dimension 2 d, Poincaré duality
gives

H (X,Z) ~H,,_,(X,Z). (7.2)

Now we shall use the following theorem:
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Theorem 7.2. Let X be a Stein manifold of dimension d. Then
H.(X,Z) =0, (ygr>d). (7.3)
Suppose this theorem is proved. Then (7.1) — (7.3) gives
HY(V,D,Z) = 0. (yg <4d). (7.4)
Now we have the exact sequence
.. >HY(V,D,Z) - H*(V,Z) - H*(D,Z) - H*"* (V,D,Z) — ...,
and using (7.4) we conclude that the mapping
HY(V,Z) - H'(D,Z)

is an isomorphism onto when ¢ < d—1 and an injection when ¢ = d—1.

This proves Lefschetz’ theorem.

The proof of Theorem 7.2 is based on Morse theory. Let X be a C*-
manifold with countable base. If fis a real-valued C”-function on X, then
a point a € X is called critical for fif df (a) = 0. A critical point a is non-
degenerate, if in local coordinates f(x) — f(a) = Za;; (x;—a;) (x;—a;)
+ o (| x—a|?), where the symmetric matrix (a;;) is non-singular. It is
non-degenerate of index r if (a;;) has r eigenvalues < 0. The non-degenerate
critical points for f are necessarily isolated. We now quote some facts from
Morse theory; for proofs, see [6].

Lemma 7.3. Suppose that feC® (X), f>0, « < f, and that X,
= {xe X; f(x) <p}is compact.

(a) If f has no critical points in {xeX:a <f(x) <P}, then X, is a
deformation retract of X,, and hence

Hr(XﬁaXaaZ) = O: (VFZO)

(b) If all critical points of fin {xeX; a <f(x) <p} are non-
degenerate of index < d, then

H,(Xp,X,,Z) =0, (yr>d).

In particular, if all critical points of fin X, are non-degenerate of index
< d, then

H,(X;,Z) =0, (yr>d).

In the proof of Theorem 7.2 we shall also use the following lemma of
- Morse:
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Lemma 7.4. Let X be a C*-manifold with countable base. Then every
real function g e C* (X) can be approximated in the topology of C* (X)
by real functions f'e C” (X), whose critical points are all non-degenerate.

The topology of C* (X) is the topology of uniform convergence of all
derivatives on compact sets. Therefore the lemma explicitly means the
following:

Let ¢ > 0, an integer r > 0 and a compact set K = X be given, and
let K = K, U ... UK;, where each K;is compact and contained in an open
set U;, where we have a coordinate system. Then there is a function f
of the prescribed type such that

sup sup sup |D*f(x) —D*g(x)| <e.
j o] <rxekK;

(Here D* means a derivative of order | « | in the coordinates on U,.)
To prove Lemma 7.4 we shall use a Lemma of Sard (see [8, Ch. 1,§3, Th. 4]):

Lemma 7.5. Let Q be an open subset of R” and f/: Q — R" a C'-mapp-
ing. Let 4 be the critical set of f; i.e. the set of a € Q where det (¢f; (a)/Cx;)
= 0. Then f(A4) has Lebesgue measure 0 in R". In particular, /' (4) is now-
here dense in R".

Proof of Lemma 7.4. Suppose first that X is an open subset Q of R”".
If g e C” (Q) is realvalued, consider the mapping

@:8Q3x —(dg/0x,, ..., 0g/0x,) e R".
The critical set 4 of ¢ is the set in Q where
det (6°g/ox; 0x;) = 0.

The lemma of Sard, applied to ¢, shows that there are arbitrarily small
&1, ..., & € R such that (e, ..., ¢,) ¢ ¢ (4). Put

JG) = g(x) —exy — .. — g,

A point xe Q is a critical point of f if and only if oglox; = ¢,
(j=1, ..., n).

At such points ¢ (x) = (ey, ..., &,) € ¢ (4) and hence det (8%g/dx; dx;)
# 0. Hence all critical points of f are non-degenerate.

Since &, ..., & can be chosen arbitrarily small, the lemma is proved
in the case X = Q.

The general case now follows by a category argument. From the special
case we conclude that we can cover X by denumerably many relatively
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compact open subsets U; of X, such that %; is dense in the space of real
C®-functions, where %; denotes the set of real C*®-functions, whose
critical points in U; are all non-degenerate. It is also easy to see that every
%; is open in the space of real C*-functions. Since this space is a real
Fréchet space, we can therefore use Baire’s theorem to conclude that the set
of all real C*-functions, whose critical points in X are all non-degenerate,
i.e. N U;, is dense. This proves the lemma of Morse.

Proof of Theorem 7.2. Let X be a Stein manifold of dimension d,
and let K be a compact subset of X such that

K= {xeX;1fx)| <I|Ifllk, Vfholomorphicon X}.

(Since X is a Stein manifold, every compact subset of X is contained
in some K of this kind.) Choose an open set U such that K <« U <« = X.
For every ae 0 U we can find a holomorphic function f on X such that
| f(x)| > 1 in a neighbourhood of @ and || f||x< 1. Since dU is compact,
we can therefore choose holomorphic functions fi, ..., f, on X such that

max | fi(a)| =1, (yaedl),
and

fillk <1, (vJ)).

By replacing each f; by a sufficiently high power, we can also arrange
that the function

p(x) =Zf;(x)?

satisfies p (x) < 1 on K and p (x) > 1 on 0U. We can also assume that the
rank of (fy, ..., f;) is maximal at all points of U.

Now peC*(X), p>0, and U; = {xeU;p(x) < B} is compact
and contains K if f < 1 is chosen so that p (x) < f in K. By calculating
the Levi form and using the maximality of the rank of (7, ..., f;), we see
that p is strongly plurisubharmonic. ’

Because of Morse’s lemma we can also assume that all critical points
of p in U, are non-degenerate. We shall prove that they are all of index < d.

We expand p at a critical point a € Uj in a local coordinate system:

p(x) = p(a) + 2Re } a@zf?@(:) (z;—a;) (z;—ay)
0% p (a) o
L 0z; 0z; (z;—a)(z;—a;) + ...

= p(a) + ReQ(z—a) + L(z—a) + ....
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Here L (z—a) is the Levi form of p at the point a. Now, since p is strongly
plurisubharmonic, we can choose the coordinates so that L (z—a)
= | z—a |>. Then we see that if { is an eigenvector corresponding to an
eigenvalue < 0 of the symmetric matrix of the real quadratic form Re ¢ (2)
+ L (z), then i{ is an eigenvector corresponding to an eigenvalue > 0.
Hence the number of negative eigenvalues is <C d, since the real dimension
of X is 2d. Thus the index of the critical point a i1s < d.

Now using Lemma 7.3 (b), we see that

H,(Ug, Z) =0, (yr > d).
From this it follows that
H,(X,Z) =0, (yr>d),

because the singular cycles defining the homology groups H, (X, Z) have
compact supports, and any compact subset of X is contained in some
compact set K with a corresponding U, > K.

A refinement of the above argument leads to the stronger (homotopy)
statement:

Any Stein manifold of (complex) dimension d has the same homotopy
type as a CW complex of (real) dimension < d. (See [6]).

Moreover, the Lefschetz theorem has an analogue in homology and
in homotopy [6]. The latter, for example, asserts that, if V, D are as in
Th. 7.1, then the relative homotopy groups =, (V, D) = 0 for g < d.

Th. 7.2 has been generalised in various directions. It has a relative
analogue (relative to a Runge domain). Further, Th. 7.2 remains true if
X is any Stein space (with singularities) of complex dimension d, but the
corresponding cohomology statement is proved only for some other co-
efficient groups [5, 7]. Note that in view of the use of Poincaré duality, this
does not lead to a Lefschetz theorem for algebraic varieties with singularities.
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