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on A. Since fe H(P", F™), this gives the desired homogeneous poly-
nomial.

To prove the theorem, it now suffices to consider all homogeneous
polynomials which vanish on 4 without being identically zero and apply
the Hilbert basis theorem. h

5. MEROMORPHIC FORMS

Let X be a complex manifold. A holomorphic differential form is a form
which in local coordinates can be written as a finite sum

dz;, N ... Adz (5.1)

w = Zail...ik i1

with holomorphic coeflicients a;,... ;.

A form is called meromorphic if it has locally the form (5.1) with co-
efficients that are meromorphic functions. Every meromorphic function
can be written locally as fw where f is a meromorphic function and w
a holomorphic form. The exterior differentiation d, satisfying d* = 0,
extends naturally to meromorphic forms.

Let D be a divisor of X and let Q* (k, D) = QF (X, k, D) be the sheaf
of germs of meromorphic p-forms on X with poles only on D and of order
< k, and let QF = QF (X) be the sheaf of germs of holomorphic p-forms
on X.

Lemma 5.1. There is a natural isomorphism
Q7 (k,D) ~ Q?Q® F*.

Proof. A germ in QF (k, D) at ae X is represented by a form fw,
where f'1s a meromorphic function in a neighbourhood U of a, with poles
only on D and of order < k, and w is a holomorphic form on U. Now to f
corresponds biuniquely a section se I' (U, F¥) (see Sect. 4), which gives a
germ s, € Fy. Also o defines a germ w, € Q7.

The desired mapping Q7 (K, D) - Q* @ F “ is now uniquely defined by

fo - 0,®s,.

To see that it is an isomorphism, it is sufficient to observe that the inverse
mapping of Q” ® F* into Q7 (k, D) is induced by the bilinear mapping
QP @ F* —» Q" (k, D), which is given by

(g5 82) = (fw),, (@ €X).
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where f 1s the meromorphic function determined by s, by the procedure
described just before Th. 4.1.

Now let X be a compact submanifold of P* and consider hyperplanes
H, in P", given in homogeneous coordinates z,, ..., z, by equations

n

Ye¢;z; = Owhere ¢ = (cg, ... ,¢,) # 0.
0

Theorem 5.2. There is an open dense set Q in C"*! such that if
¢ = (cg, ..., ¢,) € Q, the hyperplane section D, = H, n X is a non-singular
analytic subset of X.

The proof is omitted here.

Let D = H n X be a non-singular hyperplane section of X. To D is
then associated a positive line bundle F on X (see Sect. 4). By Kodaira’s
vanishing theorem there is a k, such that

HY(X,Q?@F =0, (yq=1,yk=k).
Using the isomorphism in Lemma 5.1, we have therefore proved.

Lemma 5.3. If D is a non-singular hyperplane section of a compact
submanifold X of P", then there exists k, such that

HY(X,Q"(k,D)) = 0, (¢q =1, vk =k).

6. THE ATIYAH-HODGE THEOREM

We first recall two well-known theorems.

Let X be a paracompact C” manifold and let &7 be the sheaf of germs
of C* p-forms on X (p=0, 1, ...).

Then the sequence

0->C g0 4 gt 4 g . (6.1)
is exact (Poincaré’s lemma), and
HY(X,6%) =0, (ygq=1,yp=0), (6.2)

because the &7 are fine sheaves, i.e. they have partitions of unity. From
(6.1) we get the sequence

0->T(X,6)>TX,6YH) — ...,

which need not be exact. Put
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