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easily seen that the sequence
0O-H->-0X)-C,®C, -0

is exact. From this we conclude as above that there exists an integer s (a, b)
such that the sequence

F (X, Es(a,b)) i Eas(a,b) (’B Ebs(a,b) s 0

is exact. Therefore there exists a neighbourhood W of (a,b) in X X X
such that if (a’, b") e W, then the sections of I' (X, ESY) separate a’
and b’; that is, if o, ..., 0, is a basis of I' (X, E**?), then (0o(d), ..., a(a"))
and (ao(0"), ..., o (b")) are different points in P*. Let [ be a positive integer,
let (a’, b') € W, and let o be a section of I' (X, E“?) such that ¢ (a’) # 0
and o (b") # 0. Then o'~ ! ® 0y, ..., ¢' ' ® 0, are sections of I' (X, E'*(»)
such that ((¢'™! ® o) (@), ..., (6" @ ) (@) and ((¢'"! ® o) (B), ...,
(' '®0,) (b)) are different points in P.

This means that for every positive integer  the sections of I' (X, E*@)
separate all point pairs in W. Thus, covering X X X — U by finitely many
such neighbourhoods and taking s” to be the product of the corresponding
s (a, b), we find that the sections of I' (X, E*") separate all point pairs in
X x X—U.

Let « = s's” and let oy, ..., 0, be a basis of I' (X, E*). We claim that the
mapping f from X into P? defined by f(x) = (go(x), ..., 0,(x)) is a biholo-
morphic imbedding of X into P?. That this mapping is regular follows from
the fact that « is a multiple of s'. What remains to be proved is that the map-
ping 1is injective.

Suppose a,be X, a # b. If (a, b) € U, then a, b e U; for some i, and
since «. is a multiple of s’, we have f(a) # f(b). If (a,b)e X X X — U,
then f(a) # f(b) since o is a multiple of s”. This proves the theorem.

- 4. LINE BUNDLE ASSOCIATED TO A DIVISOR

Let X be a complex manifold and D an analytic subset of X of pure
codimension 1 at every point. Such a set D is called a divisor of X. We shall
construct a line bundle F on X, associated to D.

To do this, we observe that every point of X has a neighbourhood U in
which there is a holomorphic function s such that U n D = { x € U; s(x)
= 0}, and s generates, at every point of U, the ideal of germs of holomorphic
functions vanishing on D. Thus we get a covering of X by open sets U; and
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corresponding holomorphic functions s;. The functions g;; = s,/s; are then
holomorphic and # 0 on U;n U; and g;; gy = gx on U;n U; n U,
The functions g;; therefore define a line bundle F on X with transition
functions g;; (see sect. 1). This bundle F'is determined by D uniquely up to
isomorphism. h

If feI' (X, F), then the isomorphism F|U; ~ U; X C gives a holo-
morphic function f; on U; corresponding to f. The functions f; are related
by f; = g:;/; on U; n U;. Conversely, if f; are holomorphic functions on
U;, satisfying this condition, then there is a section f of F on X, which
corresponds to f; on U,. In particular, the s; define a section s, of Fon X,

and we have D = {xe X; sp(x) = 0}.

Example. Let X = P", and let H be the hyperplane defined in the
homogeneous coordinates z, ..., z, by z, = 0. Then the process above
associates to H a line bundle F on P". As defining functions we can use
8; (2gs «e» Z,) = Zo/z; on the set U; where z; # 0, (j=0,...,n). We shall
prove that F' is positive.

Each homogeneous coordinate z, defines a section s of F, which on
each U, corresponds to the holomorphic function z,/z;, for the transition
functions are g;; = s,/s; = z;/z; and we have z,/z; = (z,/z;) g;;- Now any
section of F can be regarded as a holomorphic function on E = F*, which
is linear on the fibres of E. In particular, 59, ..., s*) give a holomorphic
mapping ¢: E — C"*1. It is clear that the zero section in E is equal to
@~ 1 (0). It is seen by direct verification that ¢ maps E onto C"*! and
E — ¢~ ' (0) biholomorphically onto C"*' — {0}. Hence E is negative
and F is positive (see sect. 1).

If V' is a submanifold of P”, then the restriction of F to ¥ is a positive
line bundle associated to the hyperplane section D = V' n H. In fact,
the dual of the restriction is the restriction E | ¥ of E to ¥, and we can use
the restriction of ¢ to E | V" as “ blowing down mapping ”.

Let again X be a complex manifold, D a divisor of X, and F the line
bundle on X, associated to D. What are the sections of F*?

If UeTI (X, F*), then s is represented in local coordinates on U ;bya
holomorphic function f;. The f; are connected by f; = gl f; on U, n U,
because the functions gf; are transition functions for F*. Now sk = gikj s'J‘- on
U; n U;, the s; being local equations for the set D as above, and thus
filsi = fi/s5 on U; 0 U;. Hence there exists a meromorphic function f on X

such that f; = 5%/ on U,.
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This means that f is meromorphic with poles only on D and of order
< k. Conversely, if f is such a meromorphic function, then f; = s’} f are
holomorphic on U; and satisfy f; = gikj f;on U, n U;. Therefore they give
a section s of F*, This correspondence is obtained simply by associating to
the section u of F¥, the meromorphic function u ® s 73".

Let us consider again the space P" and the bundle F associated to a
hyperplane section. Let (z,, ..., z,) denote homogeneous coordinates for
P". If uel (P",F"), u defines, for zeP”, an element of F, = (E.),
E being the dual bundle to F, hence a map of E, into C which is homogeneous
of degree k. Thus, u defines a map # of £ - C, homogeneous of degree
k on each fibre. If ¢ denotes the map of Einto C"** defined above, 4: E — C
is holomorphic, and vanishes on ¢! (0), and so defines a holomorphic
function v on C"*! which is homogeneous of degree k£ (v is holomorphic
also at 0 since a continuous function holomorphic outside a point in C"*?,
n > 1, is holomorphic also at this point). The Taylor expansion of v about
0 shows that v is a homogeneous polynomial of degree k. Thus, any
uel (P", F* can be identified with a homogeneous polynomial of degree k
in the homogeneous coordinates (z,, ..., z,) [i.e. the sections s, ..., s/ of F
defined above].

As an application of the vanishing theorem of Kodaira, we now prove
the following result due to Chow (cf. [3], p. 170).

Theorem 4.1. Let A be a subvariety of P". Then there exist homo-
geneous polynomials fi, ..., f; such that 4 = {aeP,; fi(a) = ... = f, (a)
=0}.

Proof. We first prove that if b ¢ 4, then there exists a homogeneous
polynomial f vanishing on 4 with f(b) # 0. Let S be the sheaf of germs
of holomorphic functions vanishing on A4 and let I be the sheaf of germs
of holomorphic functions vanishing at b. Let F be the line bundle associated
to a hyperplane section of 4. Then F'is positive. We get an exact sequence

0> IQSRF" > SQ®F" > S,QF; = 0.

By the vanishing theorem of Kodaira, part of the corresponding coho-
mology sequence will be

H°(P", S® F™) — H°(P", S,® FI') - 0,

if m is sufficiently large. Thus there exists fe H® (P", S® F™) which is not
zero at b. Since S = 0, we may look upon H° (S®F™) as a subspace of
HO (F™). It is then the subspace of those sections of H® (F™) which vanish
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on A. Since fe H(P", F™), this gives the desired homogeneous poly-
nomial.

To prove the theorem, it now suffices to consider all homogeneous
polynomials which vanish on 4 without being identically zero and apply
the Hilbert basis theorem. h

5. MEROMORPHIC FORMS

Let X be a complex manifold. A holomorphic differential form is a form
which in local coordinates can be written as a finite sum

dz;, N ... Adz (5.1)

w = Zail...ik i1

with holomorphic coeflicients a;,... ;.

A form is called meromorphic if it has locally the form (5.1) with co-
efficients that are meromorphic functions. Every meromorphic function
can be written locally as fw where f is a meromorphic function and w
a holomorphic form. The exterior differentiation d, satisfying d* = 0,
extends naturally to meromorphic forms.

Let D be a divisor of X and let Q* (k, D) = QF (X, k, D) be the sheaf
of germs of meromorphic p-forms on X with poles only on D and of order
< k, and let QF = QF (X) be the sheaf of germs of holomorphic p-forms
on X.

Lemma 5.1. There is a natural isomorphism
Q7 (k,D) ~ Q?Q® F*.

Proof. A germ in QF (k, D) at ae X is represented by a form fw,
where f'1s a meromorphic function in a neighbourhood U of a, with poles
only on D and of order < k, and w is a holomorphic form on U. Now to f
corresponds biuniquely a section se I' (U, F¥) (see Sect. 4), which gives a
germ s, € Fy. Also o defines a germ w, € Q7.

The desired mapping Q7 (K, D) - Q* @ F “ is now uniquely defined by

fo - 0,®s,.

To see that it is an isomorphism, it is sufficient to observe that the inverse
mapping of Q” ® F* into Q7 (k, D) is induced by the bilinear mapping
QP @ F* —» Q" (k, D), which is given by

(g5 82) = (fw),, (@ €X).
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