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easily seen that the sequence

0->H ->(P(X)->Ca©Cz,-+0

is exact. From this we conclude as above that there exists an integer s (<a, b)
such that the sequence

F(X,Fs(a'&)) -> Eas^ © Ebs^ -> o

is exact. Therefore there exists a neighbourhood W of (a, b) in X X X
such that if (a\ b') e W, then the sections of r (X, Es{a,b)) separate a'
and F; that is, if cr0, crfc is a basis of F (X, Fs(a'ô)), then (a0(a% 0^(0'))
and (<70(&'X Gk(b')) are different points in Pfe. Let / be a positive integer,
let (û', ô') g IF, and let <7 be a section of E (X, Fs(ö'&)) such that cr (a') ^ 0

and er Qb') # 0. Then cri_1 ® cr0, g1'1 ® ok are sections of E (X, Els(a,b))
such that ((V~1 ® cr0) (a')5 (V-1 ® ck) (a)) and ((cri_1 ® o0)(b'),...,
((7i_1®crfc) (Z/)) are different points in Pfc.

This means that for every positive integer / the sections of E (X, Els{a,b))

separate all point pairs in IF. Thus, covering X X X — £/ by finitely many
such neighbourhoods and taking s" to be the product of the corresponding
s (a, b), we find that the sections of E (X, Es") separate all point pairs in
X X X - u.

Let a s's" and let <70, ad be a basis of F (X, Fa). We claim that the

mapping / from X into Pd defined by /(x) (ö"0(x), <7d(x)) is a biholo-
morphic imbedding of X into Pd. That this mapping is regular follows from
the fact that a is a multiple of s\ What remains to be proved is that the mapping

is injective.
Suppose a, b e X, a ^ b. If (<a, Z>) e Z7, then <2, b e Ut for some i, and

since a is a multiple of F, we have /(^) # / (Z>). If (0, Z) e X x X - U,

then f{a)^f (b) since a is a multiple of F'. This proves the theorem.

4. Line bundle associated to a divisor

Let X be a complex manifold and D an analytic subset of X of pure
codimension 1 at every point. Such a set D is called a divisor of X. We shall

construct a line bundle F on X, associated to D.

To do this, we observe that every point of X has a neighbourhood U in
which there is a holomorphic function ^ such that U n D {x e U; s(x)

0 }, and s generates, at every point of U, the ideal of germs of holomorphic
functions vanishing on D. Thus we get a covering of Xby open sets Uj and
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corresponding holomorphic functions Sj. The functions gtj sjsj are then

holomorphic and ^ 0 on Utn Uj and gijgjk Sik on Ut n Uj n Uk.

The functions gtJ therefore define a line bundle F on X with transition

functions gtj (see sect. 1). This bundle F is determined by D uniquely up to

isomorphism.

If f e r (X, F), then the isomorphism F\Uj ^ Uj x C gives a

holomorphic function fj on Uj corresponding to /. The functions fj are related

by/. 5= g^fj on Ui n Uj. Conversely, ifare holomorphic functions on

Uj, satisfying this condition, then there is a section / of F on X*, which

corresponds to /} on £/. In particular, the define a section of Eon X,
and we have D { x e X; ^ (x) 0 }.

Example. Let X P", and let H be the hyperplane defined in the

homogeneous coordinates z0, zn by z0 0. Then the process above

associates to iL a line bundle F on P". As defining functions we can use

Sj(z0, ...,zn) z0/Zj on the set Uj where Zj # 0, (j=0,..., n). We shall

prove that F is positive.

Each homogeneous coordinate zk defines a section s(k) of F, which on
each Uj corresponds to the holomorphic function zjzj, for the transition
functions are gtj sjsj Zj/zt and we have zfc/zf (zjzj) gtj. Now any
section of F can be regarded as a holomorphic function on E i7*, which
is linear on the fibres of E. In particular, s(0), ...,s(k) give a holomorphic
mapping cp: E C" + 1. It is clear that the zero section in E is equal to
cp'1 (0). It is seen by direct verification that cp maps E onto Cl+1 and
E — cp'1 (0) biholomorphically onto Cn+1 — {0}. Hence E is negative
and F is positive (see sect. 1).

If V is a submanifold of P", then the restriction of F to V is a positive
line bundle associated to the hyperplane section D V n H. In fact,
the dual of the restriction is the restriction E [ V of E to V, and we can use
the restriction of cp to E | V as " blowing down mapping ".

Let again X be a complex manifold, D a divisor of X, and F the line
bundle on X, associated to D. What are the sections of Fk

If Ue T (X, Fk), then is represented in local coordinates on Uj by a

holomorphic function fj. The fj are connected by / gkjfj on Ut n Uj,
because the functions gkj are transition functions for Fk. Now sk gk- sk on
Ut n Uj, the st being local equations for the set D as above, and thus

fjA fj/A °nUi n Uj. Hence there exists a meromorphic function / on X
such that fj s)f on Uj.
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This means that / is meromorphic with poles only on D and of order

< k. Conversely, if / is such a meromorphic function, then j) s)f are

holomorphic on Uj and satisfy/ gk-fj on Ut n Uj. Therefore they give
a section s of Fk. This correspondence is obtained simply by associating to
the section u of the meromorphic function u ® s~f.

Let us consider again the space P" and the bundle F associated to a

hyperplane section. Let (z0, zn) denote homogeneous coordinates for
P". If u e r (Pn, Fk), u defines, for zeP", an element of Fz (E*z)k,

E being the dual bundle to i7, hence a map of Ez into C which is homogeneous
of degree k. Thus, u defines a map û of E -> C, homogeneous of degree
k on each fibre. If cp denotes the map of E into Cn+1 defined above, û: E C
is holomorphic, and vanishes on cp"1 (0), and so defines a holomorphic
function v on Cn+1 which is homogeneous of degree k (v is holomorphic
also at 0 since a continuous function holomorphic outside a point in Cn + 1,

« > 1, is holomorphic also at this point). The Taylor expansion of v about
0 shows that v is a homogeneous polynomial of degree k. Thus, any
ueF (Pn, Fk) can be identified with a homogeneous polynomial of degree k
in the homogeneous coordinates (z0, zn) [i.e. the sections /0), s(n) of F
defined above].

As an application of the vanishing theorem of Kodaira, we now prove
the following result due to Chow (cf. [3], p. 170).

Theorem 4.1. Let A be a subvariety of P". Then there exist

homogeneous polynomials fu ...,/ such that A {a e¥n\f^a) —fk{a)

0}.
Proof. We first prove that if b A, then there exists a homogeneous

polynomial / vanishing on A with / (b) A 0. Let S be the sheaf of germs
of holomorphic functions vanishing on A and let I be the sheaf of germs
of holomorphic functions vanishing at b. Let Fbe the line bundle associated

to a hyperplane section of A. Then F is positive. We get an exact sequence

0 -+I®S®Fm-+ S® Fm Sb®Fy ^0.
By the vanishing theorem of Kodaira, part of the corresponding coho-

mology sequence will be

H°{Pn, S® Fm) -+ H°(Pw, Sb® F) 0

if m is sufficiently large. Thus there exists f e H° (Pn, S®Fm) which is not
zero at b. Since S c 0, we may look upon J7° (S®Fm) as a subspace of
H° (Fm). It is then the subspace of those sections of H° (Fm) which vanish
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on A. Since fe H" (P", F'"), this gives the desired homogeneous poly-

nomial.
To prove the theorem, it now suffices to consider all homogeneous

polynomials which vanish on A without being identically zero and apply
the Hilbert basis theorem.

5. Meromorphic forms

Let X be a complex manifold. A holomorphic differential form is a form
which in local coordinates can be written as a finite sum

co latl iJidzil a a dzik (5.1)

with holomorphic coefficients aiy.. ik.

A form is called meromorphic if it has locally the form (5.1) with
coefficients that are meromorphic functions. Every meromorphic function
can be written locally as /co where / is a meromorphic function and co

a holomorphic form. The exterior differentiation d, satisfying d2 0,

extends naturally to meromorphic forms.
Let D be a divisor of X and let Qp (k, D) Qp (X, k, D) be the sheaf

of germs of meromorphic /»-forms on X with poles only on D and of order

< k, and let Qp Qp (X) be the sheaf of germs of holomorphic /»-forms
on X.

Lemma 5.1. There is a natural isomorphism

Qp (fe, D) ~ Qp®F_k

Proof. A germ in Qp (fc, D) at a e X is represented by a form /co,
where / is a meromorphic function in a neighbourhood U of a, with poles
only on D and of order < k, and co is a holomorphic form on U. Now tof
corresponds biuniquely a section s e T (U, Fk) (see Sect. 4), which gives a

germ sa e Fk. Also co defines a germ œa e Qp.

The desired mapping Qp (K, D) -» Qp <g) fk is now uniquely defined by

/co -> cofl (x) Sa

To see that it is an isomorphism, it is sufficient to observe that the inverse
mapping of Qp ® Fk into Qp (k, D) is induced by the bilinear mapping
Qp © Fk -> Qp (k, D), which is given by

(ro«> sa) (fco)a, (a eX)
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