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3. AN IMBEDDING THEOREM

Lemma 3.1. If X is a compact complex manifold and S a coherent
analytic sheaf over X, then I’ (X, S) is a finite dimensional vector space
(cf. remark concerning Theorem 2.2).

We will now prove an imbedding theorem (cf. [2], p. 343).

Theorem 3.2. If the complex manifold X is compact, connected, and
carries a positive (negative) line bundle, then X can be imbedded biholo-
morphically in a complex projective space PY.

Proof: Suppose F is a line bundle on a compact complex manifold X
with the property that for every a e X there exists a section o eI (X, F)
with ¢ (a) # 0. Then F defines a holomorphic mapping of X into a projective
space P* in the following way:

Since X is compact, I' (X, F) is finite-dimensional according to Lem-
ma 3.1. B

Let oy, ..., 0, be a basis of I" (X, F). Then the ¢; have no common zeros.

Since F is locally isomorphic to the product of an open subset of X and
C, the o; are locally given by holomorphic functions without common
Zeros.

We map X into P* by x — (g4(x), ..., 6,(x)). The point in the projective
space is independent of the isomorphism we are using, for if we use another
isomorphism we get a point (g(x) go(x), ..., g(x) o(x)), where g (x) # 0
(cf. (1.1)).

We are now going to show that if F is positive, then there exists an
integer y such that the sections of I' (X, F?) have no common zeros and such
that the corresponding mapping is an imbedding.

For a € X, let I be the sheaf of germs of holomorphic functions vanishing
at a. Since I is coherent, we can apply the vanishing theorem of Kodaira.
We conclude that there exists an integer k (a) such that H* (X,JQ F*=*®)=0

Since 0,/I ~ C, we have the following exact sequence

0-I->0X)-»C,—>0,

where C, is a sheaf with stalk C at a and zero outside. From this it follows
that the sequence

0—-I® Fr@ —>I_7k(“) - C,® Ek(“) -0

is exact. We have C, @ F*@ ~ Fi@, where 5@ has stalk F;® at a and
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zero outside. Using the fact that H' (X, IQ F¥?) = 0, the exact cohomology
sequence associated to the above sequence of sheaves gives us an exact

sequence
(X, F*)— I'(X,Ff) -0,

This implies that given e € FX@ there exists g e I' (X, F¥®) such that
o (a) = e. Thus, for every a € X we can find an integer k (a) and a neigh-
bourhood ¥, of a such that I" (X, F*®) has a section not vanishing on V.

Since X is compact, there are finitely many such neighbourhoods V; (i=1,
p

..., p) with corresponding sections of F " such that X = u V,. Letting
i=1

k=ky k,- ..k, wegetpelements of I' (X, E") without common zeros,

for if eI (X,F) and ¢ (x) # 0, then ¢’ =0 ® ... ® 0 eI (X, F)) and
[ - times

o' (x) # 0.

Let E = F*. Now, forae X, let G = g2, where g, is the ideal of germs
of holomorphlc functions vanishing at a. Using the above argument with
E and G instead of F and I, we see that there exists an integer s (a) such
that the restriction mapping

F (X3 ES(a)> — { (Oa/qaz } ® EHS(G)

is surjective. Since the residue classes in 0,/q, ? are sets of germs f of holo-
morphic functions at ¢ with fixed values of f (@) and df (a), this implies that
we can find a neighbourhood U, of a and sections o, ..., 0, € I (X, E5®))
which are nowhere zero in U, such that the mapping given by o, ,— g, 1S
regular and injective in U,. We observe that for every positive integer I we
can find sections o,%; ..., ¢, € I' (X, E**) which have the same properties
in U,. In fact, if ¢ is a section of E*® which has no zeros on a set M < X,
we set h
¢ =0® ..Q®0,( —1)times.

Then ¢’ ® o4, ...,0" ® o, are sections of E*@ and define the same
mapping (at least on M) as o4, ..., 7,. B

We can cover X by finitely many such neighbourhoods Uy, ..., U,. If
s'=s; - .5, then there are elements of I" (X, E%") which give a regular,
injective mapping in each U, (1 <i<r). B

We are now going to show that we can separate points in X by sections

r

of a suitable E*. Let U = u (U; X U)). For (a,b)e X X X — U, let H
=1
be the sheaf of germs of holomorphic functions vanishing at @ and 4. It is
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easily seen that the sequence
0O-H->-0X)-C,®C, -0

is exact. From this we conclude as above that there exists an integer s (a, b)
such that the sequence

F (X, Es(a,b)) i Eas(a,b) (’B Ebs(a,b) s 0

is exact. Therefore there exists a neighbourhood W of (a,b) in X X X
such that if (a’, b") e W, then the sections of I' (X, ESY) separate a’
and b’; that is, if o, ..., 0, is a basis of I' (X, E**?), then (0o(d), ..., a(a"))
and (ao(0"), ..., o (b")) are different points in P*. Let [ be a positive integer,
let (a’, b') € W, and let o be a section of I' (X, E“?) such that ¢ (a’) # 0
and o (b") # 0. Then o'~ ! ® 0y, ..., ¢' ' ® 0, are sections of I' (X, E'*(»)
such that ((¢'™! ® o) (@), ..., (6" @ ) (@) and ((¢'"! ® o) (B), ...,
(' '®0,) (b)) are different points in P.

This means that for every positive integer  the sections of I' (X, E*@)
separate all point pairs in W. Thus, covering X X X — U by finitely many
such neighbourhoods and taking s” to be the product of the corresponding
s (a, b), we find that the sections of I' (X, E*") separate all point pairs in
X x X—U.

Let « = s's” and let oy, ..., 0, be a basis of I' (X, E*). We claim that the
mapping f from X into P? defined by f(x) = (go(x), ..., 0,(x)) is a biholo-
morphic imbedding of X into P?. That this mapping is regular follows from
the fact that « is a multiple of s'. What remains to be proved is that the map-
ping 1is injective.

Suppose a,be X, a # b. If (a, b) € U, then a, b e U; for some i, and
since «. is a multiple of s’, we have f(a) # f(b). If (a,b)e X X X — U,
then f(a) # f(b) since o is a multiple of s”. This proves the theorem.

- 4. LINE BUNDLE ASSOCIATED TO A DIVISOR

Let X be a complex manifold and D an analytic subset of X of pure
codimension 1 at every point. Such a set D is called a divisor of X. We shall
construct a line bundle F on X, associated to D.

To do this, we observe that every point of X has a neighbourhood U in
which there is a holomorphic function s such that U n D = { x € U; s(x)
= 0}, and s generates, at every point of U, the ideal of germs of holomorphic
functions vanishing on D. Thus we get a covering of X by open sets U; and
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