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h; o h;~* can be written (x, 9 (x, ¢)) where y’ {x, ¢) € C. According to the
last property in (iii), for fixed x € U; n U; the mapping ¢ — 7' (x,¢) is a
C-isomorphism of C onto itself. Therefore

7' (x,¢) = g;;(x) - ¢, where g;; (x) #0, o (1.1)

and it is easily seen that g,; is holomorphic in U; n U;.
The functions g;; obviously satisfy the cocycle conditions

gijgjkgki - 1 on Ulﬂ Ujﬂ Uk’ (1.2)

The g,; are called transition functions corresponding to the line bundle F.

Conversely, it is easy to prove (cf. [4], p. 135) that given an open covering
{ U, } and functions g;; without zeros in U; n U; which satisfy the cocycle
conditions, we can construct a line bundle which has g;; as transition
functions.

Now, let F be a line bundle over a complex manifold X, and let 7 be the

corresponding projection. We denote n~* (a) by F,. Let F, be the C-dual
of F,. Then

F' = UF,
acX
is in a natural way a holomorphic line bundle over X, which is called the
dual bundle of F. If F has transition functions { g;; }, then F~ has transition
functions { g;;~* }.

Definition 1.6. Let F be a holomorphic line bundle over a compact
complex manifold. Then F is negative if the zero cross section o of F can be
blown down to a point. F is positive if the dual bundle is negative.

In the sequel we let F denote the sheaf of germs of analytic sections of
a line bundle F.

2. THE VANISHING THEOREM OF KODAIRA

This is the following theorem, which is our first main result:

Theorem 2.1. Let X be a compact connected complex manifold and F
a positive line bundle on X and S a coherent analytic sheaf on X. Then there
exists an integer k (S, F) such that for k > k (S, F) we have H1(X, S ® F
= 0 (yg=>1). B
The proof uses the following finiteness theorem:
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Theorem 2.2. Let V be a complex manifold, S a coherent analytic
sheaf on V, and D <= < V a strictly pseudoconvex subdomain of V. Then
the cohomology groups H? (D, S) are finite-dimensional C-vector spaces
if g =>1.

For a proof of Theorem 2.2 see Section 4.4 of the lectures by Malgrange
in these notes.

Proof of Theorem 2.1.

Let E be the dual bundle of F. By hypothesis, E is negative. Thus, by
Lemma 1.4, the zero cross section of E has a strictly pseudoconvex neigh-
bourhood D.

By definition, we have a projection n: £ — X. We will now use = to
“lift ” S to a coherent analytic sheaf § on E. To do this, we first consider
the sheaf of abelian groups n~! (S) which to any point a of E assigns the
stalk S, (). Since S, (,) and the ring @, (E) of germs of analytic functions at
a both are modules over the ring ¢ , (,, (X), we can form the tensor pro-
duct §,=S,® 0,(E) over 0,,,(X). Then §,is a module over 0,(E), and this
defines S. Since S is coherent, S is also coherent (cf [3], p. 401).

From Theorem 2.2 it now follows that H% (D, §) are finite-dimensional
C-vector spaces for ¢ = 1. We complete the proof of Theorem 2.1 by
constructing for every N a natural injection

N
Y, H'(X,S® F*) - H'(D, ),
k=0

N

where the sum is the direct sum as vector spaces. In fact, since dim ) H?
’ k=0
N

= ) dim HY the existence of such injections would imply the existence
k=0
of the desired integer k (S, F).

Let a be a point of the zero cross section o in the negative bundle E,
and let U be a neighbourhood of a such that £y & U x C. Identifying
a € o < E with the point 7 (a) € X, we denote by 0, (E) and 0, (X) the rings
of germs of analytic functions on E at a and on X at a, respectively.

To a germ fe 0, (E) corresponds a Taylor series Y. f,(x) z*, converg-
v=0
ing in some neighbourhood U’ X D,, where U’ <« U and D, = {z;
lz|<r}.
For xe U, let ¢ (x)e E, correspond to (x, 1) under the isomorphism
E.~ U x C, and let e (x) € F, be defined by < e (x), ¢ (x) > = 1. Then
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e (x) is a holomorphic section of F over U, and every germ p € F * is repre-
sented by p(x) e (x) ® e(x) ® ... ® e (x), (k factors e (x)), where p (x)
is holomorphic in a neighbourhood of a. But p(x) e(x) ® e(x) ® ...
®e(x)eF * can be identified with the multilinear functional

(Z15 05 2) 2 D(X) 21 " oot 2

and therefore also with the polynomial p (x) z*.
Hence, for every N we obtain an injection

N
iN: Z F,t; = (Oa(E)
k=0

N N
by mapping (po, Py» ---» Py) € ZE’,‘ onto the germ at a of Y f,(x) z*, where

0 : k=0
£, (x) is holomorphic in a neighbourhood of @ and f, (x) z* corresponds to
p€F % in the way described above. Further the map gy: Y. f,(x)z"— fi(x)z*

gives rise to a homomorphism 0, (E) — E’; such that gy o iy = id.
It is obvious that this mapping iy is injective.

From iy we also obtain a homomorphism
N
JNiS® 6(X)%:Ek—>s® oxy O(E) = S,
and the corresponding homomorphism
jy HY(X,S® ]2::{_:") — H%(p, S).

Further, the map gy defined above gives rise to a homomorphism

N
§ = S®o) 2 F*,
0

and hence a map fl
N

ny: HY(0,8) - H(X,S® Y F*)
0

such that 5y o jy = id. Hence jy is injective.
This mapping can be factored as follows

N N o B
H'(0,S® Y. ) = Y HI(S® F*) - H*(D, §) » H%(0, 5),
0 0

. . . . . . . . . ’L
and as B o o is an injection, « also is an injection, which proves the theorem.
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