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INTRODUCTION

These lectures deal with the vanishing theorem of Kodaira (cf. e.g. [2],
p. 344) and some of its consequences, and with Lefschetz’ theorem on
hyperplane sections (cf. [1]). Only complex manifolds (and not complex
spaces) are considered, but most of the results in the first part could be
carried over to the more general case (with similar proofs).

1. PRELIMINARIES

We first give some definitions:

Definition 1.1. Let V be a complex manifold and D a relatively compact,
open subset of V. Then D is strongly pseudoconvex if for every x, e 0D
there exist a neighbourhood U of x, and a real-valued C2-function ¢ defined
in U such that

(1 de (x0) # 0,
(2) H (¢)(xo) > O forall « = (ay,...,a,)eC" —{0}.
(Here H (@) is the complex Hessian form
n 62 ®
)
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with respect to some system of local coordinates),
(3) DnU={xeU; ¢(x)<0}.

It can be shown that strong pseudoconvexity of D is equivalent to the
following property: For every x, € 0D there exist a neighbourhood U of
Xo and a biholomorphic mapping /> U — Q < C" such that f(Un D) has a
strictly convex boundary (in the Euclidean sense).

Definition 1.2. Let V be a complex manifold and 4 a subset of V.
We say that 4 “ can be blown down to a point ” if there exist an analytic
space X, a point x, € X, and a mapping f/: ¥ — X such that f(4) = x, and
f1V—A4 - X — { x,} is an analytic isomorphism.

To give an example of sets which can be blown down to a point, we
mention the following theorem (for a proof see [2], pp. 338 and 340):

Theorem 1.3. If D is strongly pseudoconvex, then D has a maximal
compact analytic subset 4 whose dimension at any point is > 0 and each
component of 4 can be blown down to a point.

Lemma 1.4. 1If A can be blown down to a point, then 4 has a funda-
mental system of strongly pseudoconvex neighbourhoods.

Proof. Let X, x,, and f be as in Definition 1.2. The lemma follows
from the fact that the inverse image of a strongly pseudoconvex neigh-
bourhood of x, is a strongly pseudoconvex neighbourhood of A4.

We now introduce the concept of holomorphic line bundle.

Definition 1.5. Suppose X is a complex manifold. A holomorphic line
bundle F on X is a complex manifold F together with a mapping n with the
following properties:

(i) n: F— X is a holomorphic map (called projection) onto X.

(i) For xe X, n~! (x) has the structure of a one-dimensional vector
space over the complex numbers.

(iii) For each x € X there exist a neighbourhood U of x and a holo-
morphic mapping & of F|U = ="' (U) onto U x C such that
h~' is holomorphic and A|n~'(a) is a C-isomorphism onto
{a} x C for every ae U.

Let { U;} be an open covering of X such that for each i we have a
mapping h; of F|U; onto U; x C with the properties in (iii) above. If
U n U, # @, we get a mapping h;0h;”': (UnU;) x C - (U;nU))
x C. If (x, c) e (UinU;) x C, then the image of (x, ¢) under the mapping
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h; o h;~* can be written (x, 9 (x, ¢)) where y’ {x, ¢) € C. According to the
last property in (iii), for fixed x € U; n U; the mapping ¢ — 7' (x,¢) is a
C-isomorphism of C onto itself. Therefore

7' (x,¢) = g;;(x) - ¢, where g;; (x) #0, o (1.1)

and it is easily seen that g,; is holomorphic in U; n U;.
The functions g;; obviously satisfy the cocycle conditions

gijgjkgki - 1 on Ulﬂ Ujﬂ Uk’ (1.2)

The g,; are called transition functions corresponding to the line bundle F.

Conversely, it is easy to prove (cf. [4], p. 135) that given an open covering
{ U, } and functions g;; without zeros in U; n U; which satisfy the cocycle
conditions, we can construct a line bundle which has g;; as transition
functions.

Now, let F be a line bundle over a complex manifold X, and let 7 be the

corresponding projection. We denote n~* (a) by F,. Let F, be the C-dual
of F,. Then

F' = UF,
acX
is in a natural way a holomorphic line bundle over X, which is called the
dual bundle of F. If F has transition functions { g;; }, then F~ has transition
functions { g;;~* }.

Definition 1.6. Let F be a holomorphic line bundle over a compact
complex manifold. Then F is negative if the zero cross section o of F can be
blown down to a point. F is positive if the dual bundle is negative.

In the sequel we let F denote the sheaf of germs of analytic sections of
a line bundle F.

2. THE VANISHING THEOREM OF KODAIRA

This is the following theorem, which is our first main result:

Theorem 2.1. Let X be a compact connected complex manifold and F
a positive line bundle on X and S a coherent analytic sheaf on X. Then there
exists an integer k (S, F) such that for k > k (S, F) we have H1(X, S ® F
= 0 (yg=>1). B
The proof uses the following finiteness theorem:
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Theorem 2.2. Let V be a complex manifold, S a coherent analytic
sheaf on V, and D <= < V a strictly pseudoconvex subdomain of V. Then
the cohomology groups H? (D, S) are finite-dimensional C-vector spaces
if g =>1.

For a proof of Theorem 2.2 see Section 4.4 of the lectures by Malgrange
in these notes.

Proof of Theorem 2.1.

Let E be the dual bundle of F. By hypothesis, E is negative. Thus, by
Lemma 1.4, the zero cross section of E has a strictly pseudoconvex neigh-
bourhood D.

By definition, we have a projection n: £ — X. We will now use = to
“lift ” S to a coherent analytic sheaf § on E. To do this, we first consider
the sheaf of abelian groups n~! (S) which to any point a of E assigns the
stalk S, (). Since S, (,) and the ring @, (E) of germs of analytic functions at
a both are modules over the ring ¢ , (,, (X), we can form the tensor pro-
duct §,=S,® 0,(E) over 0,,,(X). Then §,is a module over 0,(E), and this
defines S. Since S is coherent, S is also coherent (cf [3], p. 401).

From Theorem 2.2 it now follows that H% (D, §) are finite-dimensional
C-vector spaces for ¢ = 1. We complete the proof of Theorem 2.1 by
constructing for every N a natural injection

N
Y, H'(X,S® F*) - H'(D, ),
k=0

N

where the sum is the direct sum as vector spaces. In fact, since dim ) H?
’ k=0
N

= ) dim HY the existence of such injections would imply the existence
k=0
of the desired integer k (S, F).

Let a be a point of the zero cross section o in the negative bundle E,
and let U be a neighbourhood of a such that £y & U x C. Identifying
a € o < E with the point 7 (a) € X, we denote by 0, (E) and 0, (X) the rings
of germs of analytic functions on E at a and on X at a, respectively.

To a germ fe 0, (E) corresponds a Taylor series Y. f,(x) z*, converg-
v=0
ing in some neighbourhood U’ X D,, where U’ <« U and D, = {z;
lz|<r}.
For xe U, let ¢ (x)e E, correspond to (x, 1) under the isomorphism
E.~ U x C, and let e (x) € F, be defined by < e (x), ¢ (x) > = 1. Then
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e (x) is a holomorphic section of F over U, and every germ p € F * is repre-
sented by p(x) e (x) ® e(x) ® ... ® e (x), (k factors e (x)), where p (x)
is holomorphic in a neighbourhood of a. But p(x) e(x) ® e(x) ® ...
®e(x)eF * can be identified with the multilinear functional

(Z15 05 2) 2 D(X) 21 " oot 2

and therefore also with the polynomial p (x) z*.
Hence, for every N we obtain an injection

N
iN: Z F,t; = (Oa(E)
k=0

N N
by mapping (po, Py» ---» Py) € ZE’,‘ onto the germ at a of Y f,(x) z*, where

0 : k=0
£, (x) is holomorphic in a neighbourhood of @ and f, (x) z* corresponds to
p€F % in the way described above. Further the map gy: Y. f,(x)z"— fi(x)z*

gives rise to a homomorphism 0, (E) — E’; such that gy o iy = id.
It is obvious that this mapping iy is injective.

From iy we also obtain a homomorphism
N
JNiS® 6(X)%:Ek—>s® oxy O(E) = S,
and the corresponding homomorphism
jy HY(X,S® ]2::{_:") — H%(p, S).

Further, the map gy defined above gives rise to a homomorphism

N
§ = S®o) 2 F*,
0

and hence a map fl
N

ny: HY(0,8) - H(X,S® Y F*)
0

such that 5y o jy = id. Hence jy is injective.
This mapping can be factored as follows

N N o B
H'(0,S® Y. ) = Y HI(S® F*) - H*(D, §) » H%(0, 5),
0 0

. . . . . . . . . ’L
and as B o o is an injection, « also is an injection, which proves the theorem.
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3. AN IMBEDDING THEOREM

Lemma 3.1. If X is a compact complex manifold and S a coherent
analytic sheaf over X, then I’ (X, S) is a finite dimensional vector space
(cf. remark concerning Theorem 2.2).

We will now prove an imbedding theorem (cf. [2], p. 343).

Theorem 3.2. If the complex manifold X is compact, connected, and
carries a positive (negative) line bundle, then X can be imbedded biholo-
morphically in a complex projective space PY.

Proof: Suppose F is a line bundle on a compact complex manifold X
with the property that for every a e X there exists a section o eI (X, F)
with ¢ (a) # 0. Then F defines a holomorphic mapping of X into a projective
space P* in the following way:

Since X is compact, I' (X, F) is finite-dimensional according to Lem-
ma 3.1. B

Let oy, ..., 0, be a basis of I" (X, F). Then the ¢; have no common zeros.

Since F is locally isomorphic to the product of an open subset of X and
C, the o; are locally given by holomorphic functions without common
Zeros.

We map X into P* by x — (g4(x), ..., 6,(x)). The point in the projective
space is independent of the isomorphism we are using, for if we use another
isomorphism we get a point (g(x) go(x), ..., g(x) o(x)), where g (x) # 0
(cf. (1.1)).

We are now going to show that if F is positive, then there exists an
integer y such that the sections of I' (X, F?) have no common zeros and such
that the corresponding mapping is an imbedding.

For a € X, let I be the sheaf of germs of holomorphic functions vanishing
at a. Since I is coherent, we can apply the vanishing theorem of Kodaira.
We conclude that there exists an integer k (a) such that H* (X,JQ F*=*®)=0

Since 0,/I ~ C, we have the following exact sequence

0-I->0X)-»C,—>0,

where C, is a sheaf with stalk C at a and zero outside. From this it follows
that the sequence

0—-I® Fr@ —>I_7k(“) - C,® Ek(“) -0

is exact. We have C, @ F*@ ~ Fi@, where 5@ has stalk F;® at a and
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zero outside. Using the fact that H' (X, IQ F¥?) = 0, the exact cohomology
sequence associated to the above sequence of sheaves gives us an exact

sequence
(X, F*)— I'(X,Ff) -0,

This implies that given e € FX@ there exists g e I' (X, F¥®) such that
o (a) = e. Thus, for every a € X we can find an integer k (a) and a neigh-
bourhood ¥, of a such that I" (X, F*®) has a section not vanishing on V.

Since X is compact, there are finitely many such neighbourhoods V; (i=1,
p

..., p) with corresponding sections of F " such that X = u V,. Letting
i=1

k=ky k,- ..k, wegetpelements of I' (X, E") without common zeros,

for if eI (X,F) and ¢ (x) # 0, then ¢’ =0 ® ... ® 0 eI (X, F)) and
[ - times

o' (x) # 0.

Let E = F*. Now, forae X, let G = g2, where g, is the ideal of germs
of holomorphlc functions vanishing at a. Using the above argument with
E and G instead of F and I, we see that there exists an integer s (a) such
that the restriction mapping

F (X3 ES(a)> — { (Oa/qaz } ® EHS(G)

is surjective. Since the residue classes in 0,/q, ? are sets of germs f of holo-
morphic functions at ¢ with fixed values of f (@) and df (a), this implies that
we can find a neighbourhood U, of a and sections o, ..., 0, € I (X, E5®))
which are nowhere zero in U, such that the mapping given by o, ,— g, 1S
regular and injective in U,. We observe that for every positive integer I we
can find sections o,%; ..., ¢, € I' (X, E**) which have the same properties
in U,. In fact, if ¢ is a section of E*® which has no zeros on a set M < X,
we set h
¢ =0® ..Q®0,( —1)times.

Then ¢’ ® o4, ...,0" ® o, are sections of E*@ and define the same
mapping (at least on M) as o4, ..., 7,. B

We can cover X by finitely many such neighbourhoods Uy, ..., U,. If
s'=s; - .5, then there are elements of I" (X, E%") which give a regular,
injective mapping in each U, (1 <i<r). B

We are now going to show that we can separate points in X by sections

r

of a suitable E*. Let U = u (U; X U)). For (a,b)e X X X — U, let H
=1
be the sheaf of germs of holomorphic functions vanishing at @ and 4. It is

L’Enseignement mathém., t. XIV, fasc. 1. 6
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easily seen that the sequence
0O-H->-0X)-C,®C, -0

is exact. From this we conclude as above that there exists an integer s (a, b)
such that the sequence

F (X, Es(a,b)) i Eas(a,b) (’B Ebs(a,b) s 0

is exact. Therefore there exists a neighbourhood W of (a,b) in X X X
such that if (a’, b") e W, then the sections of I' (X, ESY) separate a’
and b’; that is, if o, ..., 0, is a basis of I' (X, E**?), then (0o(d), ..., a(a"))
and (ao(0"), ..., o (b")) are different points in P*. Let [ be a positive integer,
let (a’, b') € W, and let o be a section of I' (X, E“?) such that ¢ (a’) # 0
and o (b") # 0. Then o'~ ! ® 0y, ..., ¢' ' ® 0, are sections of I' (X, E'*(»)
such that ((¢'™! ® o) (@), ..., (6" @ ) (@) and ((¢'"! ® o) (B), ...,
(' '®0,) (b)) are different points in P.

This means that for every positive integer  the sections of I' (X, E*@)
separate all point pairs in W. Thus, covering X X X — U by finitely many
such neighbourhoods and taking s” to be the product of the corresponding
s (a, b), we find that the sections of I' (X, E*") separate all point pairs in
X x X—U.

Let « = s's” and let oy, ..., 0, be a basis of I' (X, E*). We claim that the
mapping f from X into P? defined by f(x) = (go(x), ..., 0,(x)) is a biholo-
morphic imbedding of X into P?. That this mapping is regular follows from
the fact that « is a multiple of s'. What remains to be proved is that the map-
ping 1is injective.

Suppose a,be X, a # b. If (a, b) € U, then a, b e U; for some i, and
since «. is a multiple of s’, we have f(a) # f(b). If (a,b)e X X X — U,
then f(a) # f(b) since o is a multiple of s”. This proves the theorem.

- 4. LINE BUNDLE ASSOCIATED TO A DIVISOR

Let X be a complex manifold and D an analytic subset of X of pure
codimension 1 at every point. Such a set D is called a divisor of X. We shall
construct a line bundle F on X, associated to D.

To do this, we observe that every point of X has a neighbourhood U in
which there is a holomorphic function s such that U n D = { x € U; s(x)
= 0}, and s generates, at every point of U, the ideal of germs of holomorphic
functions vanishing on D. Thus we get a covering of X by open sets U; and
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corresponding holomorphic functions s;. The functions g;; = s,/s; are then
holomorphic and # 0 on U;n U; and g;; gy = gx on U;n U; n U,
The functions g;; therefore define a line bundle F on X with transition
functions g;; (see sect. 1). This bundle F'is determined by D uniquely up to
isomorphism. h

If feI' (X, F), then the isomorphism F|U; ~ U; X C gives a holo-
morphic function f; on U; corresponding to f. The functions f; are related
by f; = g:;/; on U; n U;. Conversely, if f; are holomorphic functions on
U;, satisfying this condition, then there is a section f of F on X, which
corresponds to f; on U,. In particular, the s; define a section s, of Fon X,

and we have D = {xe X; sp(x) = 0}.

Example. Let X = P", and let H be the hyperplane defined in the
homogeneous coordinates z, ..., z, by z, = 0. Then the process above
associates to H a line bundle F on P". As defining functions we can use
8; (2gs «e» Z,) = Zo/z; on the set U; where z; # 0, (j=0,...,n). We shall
prove that F' is positive.

Each homogeneous coordinate z, defines a section s of F, which on
each U, corresponds to the holomorphic function z,/z;, for the transition
functions are g;; = s,/s; = z;/z; and we have z,/z; = (z,/z;) g;;- Now any
section of F can be regarded as a holomorphic function on E = F*, which
is linear on the fibres of E. In particular, 59, ..., s*) give a holomorphic
mapping ¢: E — C"*1. It is clear that the zero section in E is equal to
@~ 1 (0). It is seen by direct verification that ¢ maps E onto C"*! and
E — ¢~ ' (0) biholomorphically onto C"*' — {0}. Hence E is negative
and F is positive (see sect. 1).

If V' is a submanifold of P”, then the restriction of F to ¥ is a positive
line bundle associated to the hyperplane section D = V' n H. In fact,
the dual of the restriction is the restriction E | ¥ of E to ¥, and we can use
the restriction of ¢ to E | V" as “ blowing down mapping ”.

Let again X be a complex manifold, D a divisor of X, and F the line
bundle on X, associated to D. What are the sections of F*?

If UeTI (X, F*), then s is represented in local coordinates on U ;bya
holomorphic function f;. The f; are connected by f; = gl f; on U, n U,
because the functions gf; are transition functions for F*. Now sk = gikj s'J‘- on
U; n U;, the s; being local equations for the set D as above, and thus
filsi = fi/s5 on U; 0 U;. Hence there exists a meromorphic function f on X

such that f; = 5%/ on U,.
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This means that f is meromorphic with poles only on D and of order
< k. Conversely, if f is such a meromorphic function, then f; = s’} f are
holomorphic on U; and satisfy f; = gikj f;on U, n U;. Therefore they give
a section s of F*, This correspondence is obtained simply by associating to
the section u of F¥, the meromorphic function u ® s 73".

Let us consider again the space P" and the bundle F associated to a
hyperplane section. Let (z,, ..., z,) denote homogeneous coordinates for
P". If uel (P",F"), u defines, for zeP”, an element of F, = (E.),
E being the dual bundle to F, hence a map of E, into C which is homogeneous
of degree k. Thus, u defines a map # of £ - C, homogeneous of degree
k on each fibre. If ¢ denotes the map of Einto C"** defined above, 4: E — C
is holomorphic, and vanishes on ¢! (0), and so defines a holomorphic
function v on C"*! which is homogeneous of degree k£ (v is holomorphic
also at 0 since a continuous function holomorphic outside a point in C"*?,
n > 1, is holomorphic also at this point). The Taylor expansion of v about
0 shows that v is a homogeneous polynomial of degree k. Thus, any
uel (P", F* can be identified with a homogeneous polynomial of degree k
in the homogeneous coordinates (z,, ..., z,) [i.e. the sections s, ..., s/ of F
defined above].

As an application of the vanishing theorem of Kodaira, we now prove
the following result due to Chow (cf. [3], p. 170).

Theorem 4.1. Let A be a subvariety of P". Then there exist homo-
geneous polynomials fi, ..., f; such that 4 = {aeP,; fi(a) = ... = f, (a)
=0}.

Proof. We first prove that if b ¢ 4, then there exists a homogeneous
polynomial f vanishing on 4 with f(b) # 0. Let S be the sheaf of germs
of holomorphic functions vanishing on A4 and let I be the sheaf of germs
of holomorphic functions vanishing at b. Let F be the line bundle associated
to a hyperplane section of 4. Then F'is positive. We get an exact sequence

0> IQSRF" > SQ®F" > S,QF; = 0.

By the vanishing theorem of Kodaira, part of the corresponding coho-
mology sequence will be

H°(P", S® F™) — H°(P", S,® FI') - 0,

if m is sufficiently large. Thus there exists fe H® (P", S® F™) which is not
zero at b. Since S = 0, we may look upon H° (S®F™) as a subspace of
HO (F™). It is then the subspace of those sections of H® (F™) which vanish
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on A. Since fe H(P", F™), this gives the desired homogeneous poly-
nomial.

To prove the theorem, it now suffices to consider all homogeneous
polynomials which vanish on 4 without being identically zero and apply
the Hilbert basis theorem. h

5. MEROMORPHIC FORMS

Let X be a complex manifold. A holomorphic differential form is a form
which in local coordinates can be written as a finite sum

dz;, N ... Adz (5.1)

w = Zail...ik i1

with holomorphic coeflicients a;,... ;.

A form is called meromorphic if it has locally the form (5.1) with co-
efficients that are meromorphic functions. Every meromorphic function
can be written locally as fw where f is a meromorphic function and w
a holomorphic form. The exterior differentiation d, satisfying d* = 0,
extends naturally to meromorphic forms.

Let D be a divisor of X and let Q* (k, D) = QF (X, k, D) be the sheaf
of germs of meromorphic p-forms on X with poles only on D and of order
< k, and let QF = QF (X) be the sheaf of germs of holomorphic p-forms
on X.

Lemma 5.1. There is a natural isomorphism
Q7 (k,D) ~ Q?Q® F*.

Proof. A germ in QF (k, D) at ae X is represented by a form fw,
where f'1s a meromorphic function in a neighbourhood U of a, with poles
only on D and of order < k, and w is a holomorphic form on U. Now to f
corresponds biuniquely a section se I' (U, F¥) (see Sect. 4), which gives a
germ s, € Fy. Also o defines a germ w, € Q7.

The desired mapping Q7 (K, D) - Q* @ F “ is now uniquely defined by

fo - 0,®s,.

To see that it is an isomorphism, it is sufficient to observe that the inverse
mapping of Q” ® F* into Q7 (k, D) is induced by the bilinear mapping
QP @ F* —» Q" (k, D), which is given by

(g5 82) = (fw),, (@ €X).
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where f 1s the meromorphic function determined by s, by the procedure
described just before Th. 4.1.

Now let X be a compact submanifold of P* and consider hyperplanes
H, in P", given in homogeneous coordinates z,, ..., z, by equations

n

Ye¢;z; = Owhere ¢ = (cg, ... ,¢,) # 0.
0

Theorem 5.2. There is an open dense set Q in C"*! such that if
¢ = (cg, ..., ¢,) € Q, the hyperplane section D, = H, n X is a non-singular
analytic subset of X.

The proof is omitted here.

Let D = H n X be a non-singular hyperplane section of X. To D is
then associated a positive line bundle F on X (see Sect. 4). By Kodaira’s
vanishing theorem there is a k, such that

HY(X,Q?@F =0, (yq=1,yk=k).
Using the isomorphism in Lemma 5.1, we have therefore proved.

Lemma 5.3. If D is a non-singular hyperplane section of a compact
submanifold X of P", then there exists k, such that

HY(X,Q"(k,D)) = 0, (¢q =1, vk =k).

6. THE ATIYAH-HODGE THEOREM

We first recall two well-known theorems.

Let X be a paracompact C” manifold and let &7 be the sheaf of germs
of C* p-forms on X (p=0, 1, ...).

Then the sequence

0->C g0 4 gt 4 g . (6.1)
is exact (Poincaré’s lemma), and
HY(X,6%) =0, (ygq=1,yp=0), (6.2)

because the &7 are fine sheaves, i.e. they have partitions of unity. From
(6.1) we get the sequence

0->T(X,6)>TX,6YH) — ...,

which need not be exact. Put
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Ker (I' (X, 67) - I'(X,67"Y))
Im(F(X, 671 - I'(X,67)

with &1 = 0. Then one has the following theorem of de Rham:

(p20), (6.3)

H? (&) =

Theorem 6.1. There are natural isomorphisms
H?(X,C) ~ H?(&), (p=0).

If X is a Stein manifold and QP the sheaf of germs of holomorphic
p-forms on X (p=0, 1, ...), then the sequence

0->C L4 o4 07— ... (6.4)
is exact (Gnothendieck’s lemma), and
HY(X,Q%) =0, (yq=1,yp=0) (6.5)
(Cartan’s Theorem B). Put

Ker (I' (X, Q%) —» I'(X, Q7))
Im(I'(X, Q%) > T (X, Q)"

H?(Q) = (» = 0)

with Q~! = 0. Then one has the following theorem
Theorem 6.2. There are natural isomorphisms
H?(X,C) ~ H? (), (p=0).

Theorems 6.1 and 6.2 both follow if one applies the following lemma
to the exact sequences (6.1) and (6.4), respectively:

Lemma 6.3. Let X be a paracompact Hausdorff space and
0—-F [ F,% F, 2 . (6.6)
an exact sequence of sheaves of abelian groups, such that
HYX,F,) =0, (ygqz1,yp=0). (6.7)
Then there are natural isomorphisms
H?(X,F) ~XKerd,/imd,_,, (p=0),

where d, is the mapping I' (X, F,) > I' (X, F,.,) induced by (6.6) (with
F_,—0).

Proof. Put Z, = Kerd, < F,. Then the exactness of (6.6) gives short
exact sequences

f S ——
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O_)Zp'—l_)Fp—l_—)Zp_}O’ (p21), (6.8)

from which we get long exact sequences of cohomology groups, which
we write in part:

H(X,F, ) > H!(X,Z,)->H""'(X,Z,_,) > H""' (X,F,-,),
(g=0,p=1). (6.9)
When g > 1, we get from (6.7) and (6.9)
HY(X,Z,)~H"'(X,Z,.), (p=1).

Since F is isomorphic to Z,, we therefore have

HY(X,F) ~H""'(X,Z,) ~...~H' (X,Z,.), (p=1). (6.10)
When g = 0, (6.9) gives an exact sequence

rX,F,_)®'I'X,Z,)->H (X,Z,_{) >0,

and thus
Hl (X’Zp‘—l) >~ F(X,Fp._l)/lmd;_l = Kerd;/1n1d;_1 N

which together with (6.10) proves the lemma when p > 1.
To prove it for p = 0, we observe that the exact sequence

O-F =Z2y,->Fy,—>72, >0
gives an exact sequence

O—_)F(XaF)—)F(XaFO)ﬁ(Xz‘Zl)
and thus .
H°(X,F) = I'(X,F) ~Kerdy; = Kerdo/Imd~ ;.

Now let V' be a compact submanifold of P” and D a non-singular
~ hyperplane section of V. Then X = VV— D is imbedded as a closed sub-
~ manifold of C", and in particular it is a Stein manifold.
| Let Q7 (D) = QP (V, D) be the sheaf of germs of meromorphic p-forms
on V with poles only on D, p = 0, 1, .... Then we have a sequence (not

necessarily exact)

0->C —->Q°(D)‘ﬁ) QI(D)‘_i_i

Define
H? = Kerd ,/Imd,_,, (p=0),

- where d’, is the-induced mapping I' (V, Q7 (D)) - I" (V, @' (D)), (with
- Q7' (D) = 0). We shall prove the following theorem of Atiyah and Hodge:

I\
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Theorem 6.4. There are natural isomorphisms
H?(X,C)~H?, (p=0).

Proof. Let &% (D) = &% (V, D) be the sheaf on V¥, which is defined by
the presheaf that to every open subset U of V associates the module of C”~
p-forms on U — D. Then we have a commutative diagram

0 - Q°(D) 40 Q' (D) 91 ...
! ! (6.11)
0—&°(D) % & (D) 4 ...,

where the vertical mappings are the inclusions.

For every p, we can regard Q7 (D) as the direct limit of Q” (k, D)
= Q? (V, k, D) as k - oo. Now, by Lemma 5.3, there is a k, such that
HY(V, Q" (k, D)) = 0 for ¢ > 1 and k > k,. Hence we can conclude that

Hq(V, QP(D)) =0, (yg=1,yp=0). (6.12)
We also have
Hi(V,67(D) = 0, (ya=1,vp=0), (6.13)

because &7 (D) are fine sheaves.
From (6.11) we get a diagram

0 - I'(V,° (D)%, I'(V, Q" (D)4 ...

| ) ) ) (6.14)
0T (V,6°(D)%, I'(V,6" (D)4, ...

The cohomology groups of the upper row in (6.14) are H”, (p=0, 1, s
and those of the lower row are the groups H” (&) in (6.3), because one can
obviously identify I' (V, 7 (D)) with I' (X, &F). In view of de Rham’s
theorem, it is therefore sufficient to prove that the vertical mappings in
(6.14) induce isomorphisms between the cohomology groups of the rows.

To do this, we will use the following theorem:

Theorem 6.5. Let X be a paracompact Hausdorff space and suppose
that two complexes & and &’ of sheaves over X are given, together with
mappings 4 such that the diagram

0916, 99 &, 41 &, — ...

hoJ h1y ha}
077 60T 81T 83 .. (6.13)




1s commutative. (The rows are not supposed to be exact, but we have
dd =0 and d'd = 0.)
Suppose further that

HY(X,&) = 0and H1(X,8,) =0, (yg = 1yk =20), (6.16)
and that for all £k > 0, 4 induces isomorphisms of the cohomology sheaves
he:Kerd'/Imd',_; - Kerd',/Imd',_, . (6.17)
Then it follows that % induces isomorphisms for all k > 0:
B Kerd’:/Imd':_, - Kerd'[Imd’; (6.18)

where d* and d'* are the mappings induced by d and d’ between the groups
of global sections of the given sheaves:

0->T(X,60) 5 T (X, 6 ) (X, 8D ...

} | ! (6.19)
0T (X,60)% I'(X,6)% I'(X,6)% ...

Proof of Theorem 6.5: Taking F = 0 in Lemma 6.3, we see that
exactness of a sequence

0—F, %

—

F, % .. (6.20)

—

together with the conditions (6.7) implies exactness of the sequence
0> I (X,Fo)% I'(X,F)°" ... (6.21)

With the help of the “ mapping cylinder ” construction we will reduce
the proof of Theorem 6.5 to an application of this fact. We define the sheaves
and mappings in (6.20) as follows (where we take &_,=0).

Fk - é(”k @gk_l; 5k(a,, a) — (dlka,, dk_la + ( —l)khka,) v

Since (6.7) follows from (6.16), it is enough to prove that the fact that
(6.17) are isomorphisms for all £ > 0 implies that (6.20) is exact, and
that the exactness of (6.21) implies that (6.18) are isomorphisms. But we
see that (6.21) is obtained from (6.19) by the same construction which lead
from (6.15) to (6.20). Thus the proof of Theorem 6.5 will be complete if we
apply the following lemma in one direction to (6.15) and (6.20) and in the
other direction to (6.19) and (6.21).

Lemma 6.6. Let (6.15) be any diagram of the type considered above
(with no condition (6.16) supposed) and such that (6.17) are isomorphisms,
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and let (6.20) be the corresponding sequence given by the above construc-
tion. Then (6.18) are isomorphisms if and only if (6.20) is exact.

Proof of Lemma 6.6. By straightforward calculation we see that
50 = 0. Clearly #, is injective if and only if B

(i) For every a' €&, and ae&,_, with d'a’ = 0 and ha’ = da there
exists b’ € &, with @’ = d'b’.
Similarly, A, _7 is surjective if and only if

(ii) For every be &,_,; with db = O there exist f'eé’,_; and ce &,
with d'f' = 0 and dc = b — hf".

Finally we want to express in a similar way the condition that (6.20) is

exact at F,. If a« € F, and 6o = 0, the condition is that « = oy for some

yeF,_,. To get rid of the signs we write o = ((—1)*""a,a) and

y = ((=1)*"' ¢/, ¢). Then the condition may be written:

(iii) For every a' € & and aec &,_, with d'a’ = 0 and ha' = da, there
exist ¢’ e &,_, and ce &,_, such that d'¢’ = &’ and dc = a—hc'.

Trivially, (iii) = (i). Taking ¢’ = 0 and a = b, we see that (iii) = (ii).
To complete the proof we will then assume that (i) and (ii) holds and prove
(iii).

Let @’ and a be as in (iii). From (i) we get '. Then d (a—hb") = da — ha'
=0 by hypothesis. Apply (ii) with b=a — hb’ and define ¢'=»b"—f". Then
dc¢ =d and a-hc’ = a—hb"'—hf' = dc, which completes the proof of
Theorem 6.5.

Continuation of the proof of Theorem 6.4. It only remains to prove
that we may take & = Q(V, D) and & = & (V, D) in Theorem 6.5. In
view of (6.12) and (6.13), it suffices to check that the mappings (6.17) are
isomorphisms for all £k > 0.

At any point of V' — D, both cohomologies are trivial, and thereis nothing
to prove. Thus it only remains to consider points in D. Let us choose a
neighbourhood U of such a point a and local coordinates (z4, ..., z,) in U
in such a way that U is the polycylinder given by | z; | < 1, (i=1, 2, ..., n),
U n D is the part of U where z; = 0, and a is the point where all z; = 0.
Now U — D = (E—{0}) X E""', where E is the open unit disk in C.
Since the second factor is contractible, the mapping (E—{0}) x E"~!
— E—{ 0} induces isomorphisms of #'* = Ker d'y/Imd’, .. Thus, by de

_ d
Rham’s theorem, #"* = 0 if k > 2, and it forms a basis for #’1. We claim
Z3
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that the same is true for #*=Kerd,/1md '._1-dince A is the natural inclusion,
this would complete the proof.
All forms considered in the sequel are meromorphic in U and have poles

0
at most on D. If y = Za; ..., dz;; A .. Adz, is a k-form, we setéZ
ZV
0d;,...; " 0
= Y g A Adz,. Thendy = Y dz, A —-.
aZv v=1 Zy
We also introduce the norm |y | = sup | 4;,...;, | . If y does not involve

n

dz,, we define 6y = > dz, A ¥ We will need the following lemma.
v=2 Zy

Lemma 6.8. 1If y is a k-form (k>1) not involving dz,, and if 6y = 0,
then there exists a form 9" not involving dz; and such that ¢y’ = y.
Proof of Lemma 6.8. We first suppose that y is a holomorphic. Then

we havey = ) z] B,and 0 = X z} § B, with convergence for |z, | < L.

v=>=0
Thus for any ¢ > 1 we have | §,| < C¢".

By the ordinary lemma in a polydisk, there exists f,” such that f,
= of,’. The mapping S, — f,’ is a mapping onto the Fréchet space of all
closed (k—1)-forms. Thus, by the open mapping theorem, we see that the
equation 68,” = f, has a solution £, with | 8, | << C’ ¢* on any smaller
polydisk P, (C’ being a constant which may depend on Thus

7 = > z,* B, is convergent in | z; | < —, which proves the lemma in the

>0 .
k

holomorphic case. In the general case we have y = Y z;~'y; with holo-
i=0
k

morphic forms y;. We apply the first case to the y; and get y' =) z,~ 'y,
i=0
which completes the proof of the lemma.

End of proof of Theorem 6.4. Let w be any k-form. Then we may write
w = dz; A d -+ f, where o« and f do not involve dz;. Suppose now that
dw = 0. This condition takes the form

0
dz, A da + dzy A a—'B— + o0f =0, (6.22)
Z

~ which implies that 6 = 0. By Lemma 6.8, we have f = 6f’ for some
~ (k—=1)-form p'.
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Now o takes the form |
w —df =dz; nao. (6.23)

We distinguish the two cases k > 1 and k = 1. In the first case we get
from (6.23)
le N\ (SOC/ - 0 s

which implies that da’ = 0. Since o’ is a form of type ¢ — 1 >1, we can apply
once again Lemma 6.8 and get o' = d«”. Thus dz; A o' = d(dz; &),
and we get w = d(f'+dz; Aa”). This proves that the cohomology under
consideration is trivial for £ > 1.

Finally, in the case k = 1, o’ is a meromorphic function, independent
of z,, ..., z,. Thus by (6.23), @ = dy for some y if and only if in the Laurent
expansion of o the coefficient of z; ™! is zero. Thus the cohomology in
dimension 1 is generated by z, ~! dz,, which completes the proof of Theo-
rem 6.4.

7. LEFSCHETZ’ THEOREM ON HYPERPLANE SECTIONS

The Lefschetz theorem in the slightly more general setting proved by
Andreotti and Frankel [1], is the following:

Theorem 7.1. Let V be a submanifold of P" of complex dimension d
and let D be a hyperplane section of V (not necessarily non-singular).
Then there are natural isomorphisms

H*(V,Z) ~ H'(D,Z), (ygq<d-1),
and a natural injection
H*™Y(V,Z) - H* (D, Z).

Proof. X =V — D is a Stein manifold, since it is imbedded as a closed
submanifold of C". Now one knows that

H*(V,D,Z) ~ H{(X,Z), (7.1)

where the ¢ indicates cohomology with compact support. On the other
hand, since X is a topological manifold of dimension 2 d, Poincaré duality
gives

H (X,Z) ~H,,_,(X,Z). (7.2)

Now we shall use the following theorem:
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Theorem 7.2. Let X be a Stein manifold of dimension d. Then
H.(X,Z) =0, (ygr>d). (7.3)
Suppose this theorem is proved. Then (7.1) — (7.3) gives
HY(V,D,Z) = 0. (yg <4d). (7.4)
Now we have the exact sequence
.. >HY(V,D,Z) - H*(V,Z) - H*(D,Z) - H*"* (V,D,Z) — ...,
and using (7.4) we conclude that the mapping
HY(V,Z) - H'(D,Z)

is an isomorphism onto when ¢ < d—1 and an injection when ¢ = d—1.

This proves Lefschetz’ theorem.

The proof of Theorem 7.2 is based on Morse theory. Let X be a C*-
manifold with countable base. If fis a real-valued C”-function on X, then
a point a € X is called critical for fif df (a) = 0. A critical point a is non-
degenerate, if in local coordinates f(x) — f(a) = Za;; (x;—a;) (x;—a;)
+ o (| x—a|?), where the symmetric matrix (a;;) is non-singular. It is
non-degenerate of index r if (a;;) has r eigenvalues < 0. The non-degenerate
critical points for f are necessarily isolated. We now quote some facts from
Morse theory; for proofs, see [6].

Lemma 7.3. Suppose that feC® (X), f>0, « < f, and that X,
= {xe X; f(x) <p}is compact.

(a) If f has no critical points in {xeX:a <f(x) <P}, then X, is a
deformation retract of X,, and hence

Hr(XﬁaXaaZ) = O: (VFZO)

(b) If all critical points of fin {xeX; a <f(x) <p} are non-
degenerate of index < d, then

H,(Xp,X,,Z) =0, (yr>d).

In particular, if all critical points of fin X, are non-degenerate of index
< d, then

H,(X;,Z) =0, (yr>d).

In the proof of Theorem 7.2 we shall also use the following lemma of
- Morse:
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Lemma 7.4. Let X be a C*-manifold with countable base. Then every
real function g e C* (X) can be approximated in the topology of C* (X)
by real functions f'e C” (X), whose critical points are all non-degenerate.

The topology of C* (X) is the topology of uniform convergence of all
derivatives on compact sets. Therefore the lemma explicitly means the
following:

Let ¢ > 0, an integer r > 0 and a compact set K = X be given, and
let K = K, U ... UK;, where each K;is compact and contained in an open
set U;, where we have a coordinate system. Then there is a function f
of the prescribed type such that

sup sup sup |D*f(x) —D*g(x)| <e.
j o] <rxekK;

(Here D* means a derivative of order | « | in the coordinates on U,.)
To prove Lemma 7.4 we shall use a Lemma of Sard (see [8, Ch. 1,§3, Th. 4]):

Lemma 7.5. Let Q be an open subset of R” and f/: Q — R" a C'-mapp-
ing. Let 4 be the critical set of f; i.e. the set of a € Q where det (¢f; (a)/Cx;)
= 0. Then f(A4) has Lebesgue measure 0 in R". In particular, /' (4) is now-
here dense in R".

Proof of Lemma 7.4. Suppose first that X is an open subset Q of R”".
If g e C” (Q) is realvalued, consider the mapping

@:8Q3x —(dg/0x,, ..., 0g/0x,) e R".
The critical set 4 of ¢ is the set in Q where
det (6°g/ox; 0x;) = 0.

The lemma of Sard, applied to ¢, shows that there are arbitrarily small
&1, ..., & € R such that (e, ..., ¢,) ¢ ¢ (4). Put

JG) = g(x) —exy — .. — g,

A point xe Q is a critical point of f if and only if oglox; = ¢,
(j=1, ..., n).

At such points ¢ (x) = (ey, ..., &,) € ¢ (4) and hence det (8%g/dx; dx;)
# 0. Hence all critical points of f are non-degenerate.

Since &, ..., & can be chosen arbitrarily small, the lemma is proved
in the case X = Q.

The general case now follows by a category argument. From the special
case we conclude that we can cover X by denumerably many relatively
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compact open subsets U; of X, such that %; is dense in the space of real
C®-functions, where %; denotes the set of real C*®-functions, whose
critical points in U; are all non-degenerate. It is also easy to see that every
%; is open in the space of real C*-functions. Since this space is a real
Fréchet space, we can therefore use Baire’s theorem to conclude that the set
of all real C*-functions, whose critical points in X are all non-degenerate,
i.e. N U;, is dense. This proves the lemma of Morse.

Proof of Theorem 7.2. Let X be a Stein manifold of dimension d,
and let K be a compact subset of X such that

K= {xeX;1fx)| <I|Ifllk, Vfholomorphicon X}.

(Since X is a Stein manifold, every compact subset of X is contained
in some K of this kind.) Choose an open set U such that K <« U <« = X.
For every ae 0 U we can find a holomorphic function f on X such that
| f(x)| > 1 in a neighbourhood of @ and || f||x< 1. Since dU is compact,
we can therefore choose holomorphic functions fi, ..., f, on X such that

max | fi(a)| =1, (yaedl),
and

fillk <1, (vJ)).

By replacing each f; by a sufficiently high power, we can also arrange
that the function

p(x) =Zf;(x)?

satisfies p (x) < 1 on K and p (x) > 1 on 0U. We can also assume that the
rank of (fy, ..., f;) is maximal at all points of U.

Now peC*(X), p>0, and U; = {xeU;p(x) < B} is compact
and contains K if f < 1 is chosen so that p (x) < f in K. By calculating
the Levi form and using the maximality of the rank of (7, ..., f;), we see
that p is strongly plurisubharmonic. ’

Because of Morse’s lemma we can also assume that all critical points
of p in U, are non-degenerate. We shall prove that they are all of index < d.

We expand p at a critical point a € Uj in a local coordinate system:

p(x) = p(a) + 2Re } a@zf?@(:) (z;—a;) (z;—ay)
0% p (a) o
L 0z; 0z; (z;—a)(z;—a;) + ...

= p(a) + ReQ(z—a) + L(z—a) + ....
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Here L (z—a) is the Levi form of p at the point a. Now, since p is strongly
plurisubharmonic, we can choose the coordinates so that L (z—a)
= | z—a |>. Then we see that if { is an eigenvector corresponding to an
eigenvalue < 0 of the symmetric matrix of the real quadratic form Re ¢ (2)
+ L (z), then i{ is an eigenvector corresponding to an eigenvalue > 0.
Hence the number of negative eigenvalues is <C d, since the real dimension
of X is 2d. Thus the index of the critical point a i1s < d.

Now using Lemma 7.3 (b), we see that

H,(Ug, Z) =0, (yr > d).
From this it follows that
H,(X,Z) =0, (yr>d),

because the singular cycles defining the homology groups H, (X, Z) have
compact supports, and any compact subset of X is contained in some
compact set K with a corresponding U, > K.

A refinement of the above argument leads to the stronger (homotopy)
statement:

Any Stein manifold of (complex) dimension d has the same homotopy
type as a CW complex of (real) dimension < d. (See [6]).

Moreover, the Lefschetz theorem has an analogue in homology and
in homotopy [6]. The latter, for example, asserts that, if V, D are as in
Th. 7.1, then the relative homotopy groups =, (V, D) = 0 for g < d.

Th. 7.2 has been generalised in various directions. It has a relative
analogue (relative to a Runge domain). Further, Th. 7.2 remains true if
X is any Stein space (with singularities) of complex dimension d, but the
corresponding cohomology statement is proved only for some other co-
efficient groups [5, 7]. Note that in view of the use of Poincaré duality, this
does not lead to a Lefschetz theorem for algebraic varieties with singularities.
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