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whenever x € K, we get a = inf | (x)] >0. Hence ||f|| = 3111<p |hf (x)| =
K
2 asup |7 9) = all ]|

(i) = (ii). Suppose that XnK # g and x = (x;, x;) € XnK. We
choose an analytic function f; : U;—~C, where U; Kj, and U, is open,
such that £, (x,) =1, | f1 (?)] < 1 if z€ K, z # x. Similarly we choose
an analytic function f, : U,—C, with the same properties. Consider the
function /€ B(K) : (zy, 2,)—=f1 (z1) f> (z,). Since A (x) = 0 it follows that
the sequence {4 f"} converges pointwise to 0 in K.

Applying Dini’s theorem we get ||£"(|—0. From the inequality a || f"|| =
< ||hf"|| we get ||/"||-0, which is a contradiction, because for every
n:f"(x)=1.

(b) Use the Weierstrass preparation theorem (extended form).

Question. Does the condition (ii) imply that 4 : B(K)—B (K) is a split
monomorphism?

IV. FLATNESS AND PRIVILEGE

§ 1. Morphisms from an analytic space into B(K)

Let S be an analytic space and K a polycylinder in an open set U= C"
We want to construct an @g-algebra homomorphism ¢ : Oy, y (SXU)—
—# (S; B(K)).

(a) Consider first S = U'<C"™, U'-open. If he Oy .y, (U'XU) and se U’,
x € K, define (¢p(h)(s))(x)=h (s,x). Using the Cauchy integral, one can
show that ¢ (h) is analytic. On the other hand its obvious that ¢ is an
Oy ~algebra homomorphism.

(b) Let S have a special model in the polydisc 4 in C™, defined by a sheaf ¢

of ideals of 04, and let # be generated by f1, ..., f,, V-a polycylinder
neighbourhood of K in U. By Cartan’s theorem B for a polycylinder,

the sequence 0— £ (AXV)—>0(AXV)—>0O(SXxV)—0 is exact. If we denote
by 7 the projection o (4, B(K))—# (S, B (K)), (f1, ..., f,) - # (4, B(K))<
cKer 7; Therefore, because = is surjection, there exists a unique

¢ O(SXV)>H (S, B(K)), such that the diagram
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OUxV) i%”(A,B(K))
T 17~z
O(SxV) ibm%*”(S,B(K))

1s commutative; ¢ is evidently an (@g-algebra homomorphism.

§ 2. The flatness and privilege theorem

Notation

Let S be an analytic space, U an open set in C", and 7 : SX U—S the
first projection.

If # is an Oy, y module, then for every s e S we denote by Z (s) the
Oy-module i; #, where i, is the injective morphism x—(s, x) from U into
SxU. If xeU

(97 (S))x = g;(s,x)/ms. G s, wy £ ﬁ(s, x) ®‘9sscs'

Theorem 1: Let & be a coherent and S-flat 05, y-module, and K a poly-
cylinder in U.

(a) When K is privileged for & (s,), s, has a neighbourhood ¥V such that K is
& (s)-privileged for each se V. In other words: the set $' = {se€ S ] K
is & (s)-privileged} is open in S.

(b) It is possible to define a Banach vector bundle over S” whose fibre at
any se S’ is B(K, & (s)).
To prove the theorem we need:

Lemma 1 : Under the conditions of the theorem, we can, for every s € S,
find a neighbourhood W of {s} XK and a free resolution of finite length

dp d2 dy £ .
02 ,>.>Z->ZLy—>E-0 in W.

Proof : Let (s, x) be a point of §x U and %9 a finite resolution of & (x)
in a neighbourhood of x (there exists such one, by the theorem of syzygies).
We shall show that that there exists a resolutin #* of & in a neighbour-

hood of (s, x) such that Z* (s) = £%; if #° = 0. define

L, = (Qrgixvand,%’? = Kerd?: &9 - &) ..
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We shall construct by induction (with respect to i) d; :. % —>%;-; ina
neighbourhood of (s, x) such that d, (s) = d}, and prove that #"; = Ker d;
is S-flat and that 4, (s) = A",

A 541 XK Suppose that we have constructed d; and proved
iv1 — Ny :
the preperties for ;. We can construct d;;; 1L ;44
1 " ‘ —.%.in a neighbourhood of (s, x) such that the diagram
L9, My Q is commutative.

Nakayama’s lemma shows that Im d;,,; = X, at the point (s, x), there-
fore in a neighbourhood of that point. '
The exact sequence

0-A" 41> L1 A0,
where #'; and ¥;., are S-flat, shows that 2", is S-flat, and that

Ao (8) =AY, ,. The first step of the induction is analogous.

Proof of the theorem: Let s, € S and
d, dy
0-Z,—»..>Zy—>E&W-0

be a free Og,y resolution of & in a neighbourhood W = 'Vl XV, of
{so} XK. The sheaf & is Osflat, so for each s e ¥, the sequence

O_%gp@(pSlVl CS_-)“’_)"?I ®0S|V1Cs__) go ®@S[V1CS__)éalW®mSlV CS—->0

1
is exact. So the sequence
dp(s) di(s) &)
() 052, ~mZi() > Lo(s) - 6,0

is exact when se V. Now Z, (s) ~ 0y, ; (0<i=p) and every d; (s) induces
a continuous linear map:

B(K, Z;(s))=B (K, Z;_,(s)), which we also denote by d; (s). We can
consider d; = (d;) asanr;Xr;_;-matrix with entries from Oy, , (W).

By § 1 we have a Og-algebra homomorphism

Osyw (S x W)= (S, B(K)).

From the matrix (d;;) we get by this homomorphism a morphism :li:

Vo Z (B(K)', B(K)Y'™™") = Z(B(K, £,(5)), B(K, Z;_(5)) .
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(Here V, is some neighbourhood of s,) such that cNZ,- (s) = d; (s) for
each s e V,. In other words we have a sequence of Banach vector bundle
morphisms

d, d,

(B) 0-B(K,Z,) — .. > B(K,Z,).

Using the fact that Og,  (SX U)-3# (S, B(K)) is an Og-algebra homo-
morphism, it easily follows that (B) is complex of Banach vector bundles
over S.

Now K 1s & (sy)-privileged, thus
dy(so)  di(so)
0-B(K, £,(s0) — ... = B(K,Z,(s))

1s split exact, so by theorem III.1
|V d|v
0"")B(K, gp)ly = eee "')B(K, go)”/

is split exact for some neighbourhood V of s,.

Because ;Z,- (s) = d;(s) and the sequence (A4) is exact part (a) of the

theorem follows.

(b) B(K. Z,)|V splits as the direct sum of im d; and a bundle £, such
that E,, ; ~ B (K, & (s)), for each s € V. We must show that these bundle
structures fit together globally.

Suppose therefore that ¥ is open in S’ and that

d, d, d,
0—>§fp——>...—>$1—>$0—>@@wxv2—>0
& 4 d

0—>$I',——>...—>$i—+$(')-—>é"wxy2—->0

are free resolutions of £ over VX V,.
If V,, V, are open polycylinders, we can find an Oy, y-homomorphism
b0 : Lo— L, such that |

8'

g(;_')gleV2—)O

$ol I

&

go‘*&Vsz—*O
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commutes. ¢, determines a bundle morphism ¢,: B (K, £o)—>B (K, L)
B(K, £,) (tesp. B(K, Z5)) splits as (im d;)®Ey [Resp. (im d;)®Ey].
Let p’ be the projection morphism: B (K, £.)—Ey with kernel im di,

and put ¢ = p’ o ¢ylEy.
The commutative diagram

BAK, L, () <P \,B(K,I: {(s7)
e
€ ™~ 4 ' L/ ii‘
\5}
Al

E‘v,s —:—_——9E
B(KJé(s)) ¢ )B(Kaz(s‘l)

v s

~ '3
/:dte
{el

and the open mapping theorem shows that g?)(s) is an isomorphism of
Banach spaces for each se ¥V, so ;5 : E,—E, is a bundle isomorphism. We
also notice that q~5 depends only on the choice of splittings in B (X, %,) and
B (K, %,), and not on the choice of qNZ;O. This ends the proof of the theorem.

Remark : Consider the general situation where X and S are analytic
spaces, and © : X— S is a morphism, & an @Oy-module. To study the local
P _Tﬁi; S x 1 dependence of & on S, one can imbed an open set X' in X in

the openset U= C". The morphism ¢: X'— U, n: X'— Sdeter-

\"”S « mine the imbedding X ¢: X'— S % U such that the diagram

commutes. & can be extended by zero into a sheaf &' over U x S. Obviously
this sheaf &’ is S-flat iff & i1s S-flat.

Therefore theorem 1 makes clear also this general situation.

Corollary : If m : X—S§ is a morphism and & a coherent Oy-module.
Then = | Supp (&) is an open map.

Proof : Suppose as above that X is imbedded in S'x U, and & in extended
by zero to Sx U. Let x, € Supp &, and V be a neighbourhood of x, in Sx U.
Let s, == 7 (x,) and choose an & (s,)-privileged polycylinder K in U, such
that {s,} X K<V, over some neighbourhood W of s,. We have the Banach
bundle B (K, &|n~"' (W)), whose fiber over s is B (K, & (s)). Since
Xo € Supp & (s,) and K is a neighbourhood of x,, B(K; & (s,)) # 0. As all
the fibers are isomorphic, then for all se U, B(K; &(s)) # 0and therefore
{8} XKnSupp & #0, and se = (Supp &). This proves that 7 is open.
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