III. Privileged polycylinders

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 14 (1968)
Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:

29.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Remark: This a particular case of the following proposition: if π and π^{\prime} are two morphisms of which at least one is finite, then

$$
\underset{\pi}{\pi}, \quad \underset{S}{Y} \quad \mathcal{O}_{X \times Y}=\mathcal{O}_{X} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{y} .
$$

We have proved that $\mathcal{O}_{W \times X}$ is \mathcal{O}_{W} flat, so by scalar extension $\mathcal{O}_{S \times X}$ is \mathcal{O}_{S} flat.
Corollary: If X and S are two manifolds and $\pi: X \rightarrow S$ is a submersion, then π is flat.

III. Privileged polycylinders

§ 1. Banach vector bundles over an analytic space

Let E be a Banach space and X an analytic space. We denote then by E_{X} the trivial bundle $X \times E$ over X.

To define bundle morphisms, we first define the sheaf $\mathscr{H}_{X}(E)$ of germs of analytic morphisms from X to E. If $U \subset \mathbf{C}^{n}$ is open, then the set $\mathscr{H}(U, E)$ of analytic morphisms from U into E consists of all functions $g: U \rightarrow E$ having at every point $x \in U$ a converging power series expansion.

Let now X^{\prime} be a local model for X, i.e. X^{\prime} is the support of the quotient sheaf \mathscr{O}_{U} / J, where $U \subset \mathbf{C}^{n}$ is open and J is a coherent sheaf of ideals of \mathscr{O}_{U}, then $\mathscr{H}_{X^{\prime}}(E)$ is the sheaf associated to the presheaf $V \rightarrow \mathscr{H}(V, E) / J_{V} \mathscr{H}(V, E)$ ($V \subset U, V$-open).

Remark: If X^{\prime} is reduced, the sections of $\mathscr{H}_{X^{\prime}}(E)$ are just the functions from X^{\prime} to E which are locally induced by analytic functions on open sets in U.

The sheaf $\mathscr{H}_{X}(E)$ is constructed with help of the local models X^{\prime} of X, i.e. $\mathscr{H}_{X}(E) \mid X^{\prime}=\mathscr{H}_{X^{\prime}}(E)$, for every local model X^{\prime}.

Definition 1: The set of analytic morphisms from an analytic space X into a Banach space E is the set $\mathscr{H}(X ; E)$ of sections of the sheaf $\mathscr{H}_{X}(E)$.

Let $\mathscr{L}(E, F)$ be the Banach space of all continuous linear mappings from the Banach space E into the Banach space F.

Definition 2: An analytic vector bundle morphism from E_{X} into F_{X} is an analytic morphism from X into $\mathscr{L}(E, F)$.

Let E be a topological space, X an analytic space, and $\pi: E \rightarrow X$ a continuous projection.

Suppose that X has an open covering $\left(U_{\mathrm{t}}\right)_{\varepsilon \varepsilon I}$, and that for every $\iota \in I$ there is given a trivial Banach space bundle $E_{l U_{l}}$ and a homeomosphism ϕ_{t}, such that the following diagram is commutative:

We suppose further that for each pair $t, \kappa \in I$ there is given an analytic vector bundle morphism $\gamma_{L \kappa}: E_{\kappa U_{\mathrm{L}} \cap U_{\kappa}} \rightarrow E_{\left\llcorner U_{\mathrm{L}} \cap U_{K}\right.}$, with the underlying mapping $\phi_{\iota} \circ \phi_{\kappa}^{-1}$, such that:

$$
\gamma_{l \lambda}=\gamma_{l \kappa} \gamma_{\kappa \lambda} ; \quad \gamma_{t}=I, \quad \text { for all } \quad \iota, \kappa, \gamma \in I
$$

This data gives a Banach vector bundle atlas on E and provides E with the structure of a Banach vector bundle over X (two atlases are equivalent if there exists an atlas containing both).

Remark: If X is reduced, the $\gamma_{t \kappa}$ are determined by their underlying map and the condition $\gamma_{\llcorner\lambda}=\gamma_{L \kappa} \gamma_{\kappa \lambda}$ is automatically satisfied.

Using local triviality, we can define morphisms for general Banach vector bundles.

Proposition 1: Let $\phi: E \rightarrow F$ be a morphism of two Banach vector

bundles E and F, and $x \in X$.
If $\phi_{x} \in \mathscr{L}(E(x), F(x))$ is an isomorphism, then there exists an open neighbourhood $U \subset X$ of x, such that $\phi|U: E| U \rightarrow F \mid U$ is a vector bundle isomorphism.

Proof: First we take a trivialisation $E\left|V=E_{0 V}, F\right| V=F_{0 V}$ at $x \in V \subset X$ (V-open).

The set $\operatorname{Isom}\left(E_{0}, F_{0}\right)$ of isomorphic mappings is an open subset of $\mathscr{L}\left(E_{0}, F_{0}\right)$ and the mapping $g \rightarrow q^{-1}$ is an analytic isomorphism:

$$
\operatorname{Isom}\left(E_{0}, F_{0}\right) \simeq \operatorname{Isom}\left(F_{0}, E_{0}\right)
$$

So we have in an open neighbourhood $U \subset X$ of x an analytic morphism $y \rightarrow \phi_{y}^{-1} \in \mathscr{L}\left(F_{0}, E_{0}\right)$, which defines the inverse morphism $(\phi \mid U)^{-1}: F \mid U \rightarrow$ $\rightarrow E \mid U$.

Definition 3: Let E and F be two Banach spaces and f a continuous linear mapping from E into F. f is a split mono-(epi) morphism, if there exists a mapping $g \in \mathscr{L}(F, E)$ such that $g \circ f=I_{E}$. (Resp. $f \circ g=I_{F}$.)

Definirion 4: Let E_{1} and E_{2} be two Banach vector bundles over an analytic space X, and f a vector bundle morphism from E_{1} into $E_{2} . f$ is a split mono (epi) morphism, if there exists a vector bundle morphism $g: E_{2} \rightarrow E_{1}$ such that $g \circ f=I_{E_{1}}$. (Resp. $f \circ g=I_{E_{2}}$.)

Equivalently, $f: E_{1} \rightarrow E_{2}$ is a split monomorphism if an only if E_{2} can

be decomposed in a direct sum $E_{2}=F_{2} \oplus G_{2}$ such that

$$
f:\left\{\begin{array}{c}
E_{1} \simeq F_{2} \\
0 \rightarrow G_{2}
\end{array} .\right.
$$

and f is a split epimorphism if correspondingly

$$
E_{1}=F_{1} \oplus G_{1}, \quad \text { such that } f:\left\{\begin{array}{l}
F_{1} \rightarrow 0 \\
G_{1} \simeq E_{2}
\end{array}\right.
$$

Proposition 2 : Let $E \xrightarrow{\varphi} F$ be a bundle morphism and $x \in X$.

If $\phi_{x}: E(x) \rightarrow F(x)$ is a split epi (mono) morphism, then the point x has an open neighbourhood $U \subset X$, such that $\phi|U: E| U \rightarrow F \mid U$ is a split vector bundle epi (mono) morphism.

Proof: Suppose that ϕ_{x} is a split epimorphism. We take first a trivilisation $E\left|V=E_{0 V}, F\right| V=F_{0 V}$ at x, so that there exists a mapping $\sigma \in \mathscr{L}\left(F_{0}, E_{0}\right)$, $\phi_{x} \circ \sigma=I_{F_{0}}$. If we define a morphism $\psi: F_{0 V} \rightarrow E_{0 V}$ by $x \rightarrow \sigma \in \mathscr{L}\left(F_{0}, E_{0}\right)$, the morphism $\gamma=\phi \circ \psi: F_{0 V} \rightarrow F_{0 V}$ has an isomorphic fibre mapping $\gamma_{x}=I_{F_{0}}$ in x. By proposition 1 we have an isomorphic restriction $\gamma|U, \phi| U \circ(\psi \mid U \circ$ $\left.(\gamma \mid U)^{-1}\right)=I_{F_{0 U}}$.

When ϕ_{x} is a split monomorphism, the proof is similar.
Definition 5: Let B_{1}, B_{2}, B_{3} be Banach spaces, and $j, k: B_{1} \rightarrow B_{2} \rightarrow B_{3}$ continuous linear mappings. This sequence forms a complex, if $k \circ j=0$. This sequence is split exact if the space B_{i} can be decomposed in direct
sums $B_{i}=C_{i} \oplus D_{i}$ such that

$$
j:\left\{\begin{array}{l}
C_{1} \rightarrow 0 \\
D_{1} \simeq C_{2}
\end{array} \quad k:\left\{\begin{array}{l}
C_{2} \rightarrow 0 \\
D_{2} \simeq C_{3}
\end{array}\right.\right.
$$

Definition 6: A Banach vector bundle morphism sequence

$$
\mathrm{E}_{1} \xrightarrow{\mathrm{f}} \mathrm{E}_{2} \xrightarrow{\mathrm{~g}} \mathrm{E}_{3} \quad \text { is a complex if } g \circ f=0 .
$$

The sequence is split exact, if every E_{i} can be decomposed $E_{i}=F_{i} \oplus G_{i}$, such that:

$$
f:\left\{\begin{array}{l}
F_{1} \rightarrow 0 \\
G_{1} \simeq F_{2}
\end{array} \quad g:\left\{\begin{array}{l}
F_{2} \rightarrow 0 \\
G_{2} \simeq F_{3}
\end{array} .\right.\right.
$$

Theorem 1: Let $\mathrm{E}_{1} \xrightarrow{\mathbf{f}} \mathrm{E}_{\mathrm{X}} \xrightarrow{\mathrm{g}} \mathrm{E}_{3}$ be a complex of Banach vector bundles and $x_{0} \in X$.

If the sequence of Banach spaces $E_{1}\left(x_{0}\right) \xrightarrow{f_{x_{0}}} E_{2}\left(x_{0}\right) \xrightarrow{f_{x_{0}}} E_{3}\left(x_{0}\right)$ is split exact, then there exists an open neighbourhood $U \subset X$ of x_{0}, such that ${ }_{f}\left|\cup \quad{ }^{\prime}\right| U$ $E_{1}\left|U \rightarrow E_{2}\right| U \rightarrow E_{3} \mid U$ is a split exact sequence of Banach vector bundles.

Proof: We take a neighbourhood V of x, such that we have a complex $f|V \quad g| V$ $E_{1 V} \rightarrow E_{2 V} \rightarrow E_{3 V}$ of trivial bundles. By assumption we have the decompositions $E_{i V}\left(x_{0}\right)=F_{i}\left(x_{0}\right) \oplus G_{i}\left(x_{0}\right)$ with

$$
f_{x_{0}}:\left\{\begin{array}{l}
F_{1}\left(x_{0}\right) \rightarrow 0 \\
G_{1}\left(x_{0}\right) \simeq F_{2}\left(x_{0}\right)
\end{array} \quad g_{x_{0}}:\left\{\begin{array}{l}
F_{2}\left(x_{0}\right) \rightarrow 0 \\
G_{2}\left(x_{0}\right) \simeq F_{3}\left(x_{0}\right)
\end{array} .\right.\right.
$$

By proposition $2, f\left|V: G_{1 V} \rightarrow E_{2 V}, g\right| V: G_{2 V} \rightarrow E_{3 V}$ are both split monomorphisms in a neighbourhood $W \subset V$ of x_{0} and the images $F_{2}=f\left(G_{1 W}\right)$, $F_{3}=g\left(G_{2 W}\right)$ are subbundles of $E_{2 W}$ esp. $E_{3 W}$, such that

$$
E_{2 W}=F_{2} \oplus G_{2 W}, \quad E_{3 W}=F_{3} \oplus G_{3 W}
$$

By our construction

$$
g \mid W:\left\{\begin{array}{ll}
F_{2} & \rightarrow 0 \\
G_{2} W & \simeq F_{3}
\end{array} .\right.
$$

If $p: E_{2 W} \rightarrow F_{2}$ is the projection with kernel $G_{2 W}$, the map, $p \circ f: E_{1 W} \rightarrow F_{2}$ is a split epimorphism in x_{0}. Again by prop. 2 we have over an open eighbourhood $U \subset W$ of x_{0} a decomposition $E_{1 U}=F_{1} \oplus G_{1 U}$ (with $F_{1}=$ Ker p $\circ f$)

$$
(p \circ f) \mid U:\left\{\begin{array}{ll}
F_{1} & \rightarrow 0 \\
G_{1 U} & \sim F_{2 U}
\end{array} .\right.
$$

The image $f \mid U\left(F_{1}\right)$ is contained in $G_{2 U}$. But $g|U \circ f| U=0$ and $g \mid G_{2 U}$ is a monomorphism hence $f \mid U: F_{1} \rightarrow 0$. We get finally (restricting all our morphisms to U)

$$
f \mid U:\left\{\left.\begin{array}{l}
F_{1 U} \rightarrow 0 \\
G_{1 U} \simeq F_{2 U}
\end{array} \quad g \right\rvert\, U:\left\{\begin{array}{l}
F_{2 U} \rightarrow 0 \\
G_{2 U} \stackrel{\sim}{\rightarrow} F_{3 U}
\end{array} .\right.\right.
$$

§ 2. Privileged polycylinders

Definition 1: A polycylinder in \mathbf{C}^{n} is a compact set K of the form $K=K_{1} \times \ldots \times K_{n}$ where each K_{i} is a compact, convex subset of \mathbf{C}, with nonempty interior. If each K_{i} is a disc, then K is a polydisc. We first recall the following theorem of Cartan.

Theorem 1: Let K be a polycylinder contained in an open subset U of \mathbf{C}^{n}. Let \mathscr{F} be a coherent analytic sheaf on U.
(A) There exists an open neighbourhood of K over which \mathscr{F} admits a finite free resolution

$$
0 \rightarrow \mathscr{L}_{n} \rightarrow \ldots \rightarrow \mathscr{L}_{1} \rightarrow \mathscr{L}_{0} \rightarrow \mathscr{F} \rightarrow 0
$$

(B) $H^{q}(K, \mathscr{F})=0$ for $q>0$.
(Reference: For instance Gunning and Rossi.)
We have the following consequences of this theorem:

1) Given a finite free resolution

$$
0 \rightarrow \mathscr{L}_{n} \rightarrow \ldots \rightarrow \mathscr{L}_{1} \rightarrow \mathscr{L}_{0} \rightarrow \mathscr{F} \rightarrow 0
$$

of a coherent sheaf \mathscr{F}, the sequence

$$
0 \rightarrow \mathscr{L}_{n}(K) \rightarrow \ldots \rightarrow \mathscr{L}_{0}(K) \rightarrow \mathscr{F}(K) \rightarrow 0
$$

is an $\mathcal{O}_{U}(K)$ - free resolution of $\mathscr{F}(K)$.
2) Given a short exact sequence of coherent sheaves

$$
0 \rightarrow \mathscr{F}^{\prime} \rightarrow \mathscr{F} \rightarrow \mathscr{F}^{\prime \prime} \rightarrow 0,
$$

then the sequence

$$
0 \rightarrow \mathscr{F}_{1}(K) \rightarrow \mathscr{F}(K) \rightarrow \mathscr{F}^{\prime \prime}(K) \rightarrow 0 \quad \text { is exact. }
$$

Let \mathscr{F} be a coherent analytic sheaf on U, and let $K \subset U$ be a polycylinder If V is an open neighbourhood of K, then $\mathscr{F}(V)$ can be equipped with a Fréchet-space structure (see: Malgrange).

Hence we can give $\mathscr{F}(K)$ the structure of inductive limit of Fréchetspaces. It is however essential for certain purposes to have Banach-spaces. This can be obtained by choosing a space slightly different from $\mathscr{F}(K)$ and by choosing K in a " privileged " way.

Let $B(K)=\{f: K \rightarrow \mathbf{C} \mid f$ continuous on K and analytic on $\stackrel{\circ}{K}\}$, then $B(K)$ is Banach algebra and $B(K) \subset C(K)$. The sections of \mathcal{O}_{U} over K are elements of $B(K)$, and $B(K)$ is in fact the uniform closure of $\mathcal{O}_{U}(K)$ in $C(K)$.

If $\mathscr{L}=\mathcal{O}_{U}^{r}$, we define $B(K, \mathscr{L})=B(K)^{r}$. Then $B(K ; \mathscr{L})$ is a free $B(K)$ module, and since $\mathscr{L}(K)=\mathcal{O}_{U}(K)^{r}$, we have $B(K ; \mathscr{L})=B(K) \otimes \mathscr{L}(K)$.

We now assume that \mathscr{F} is a coherent sheaf on U, where $U \subset \mathbf{C}^{n}$ is open. Consider a free resolution

$$
\begin{equation*}
0 \rightarrow \mathscr{L}_{n} \rightarrow \ldots \rightarrow \mathscr{L}_{1} \rightarrow \mathscr{L}_{0} \rightarrow \mathscr{F} \rightarrow 0 \quad \text { of } \mathscr{F} . \tag{R}
\end{equation*}
$$

From (R) we get an $\mathcal{O}_{U}(K)$-free resolution of $\mathscr{F}(K)$

$$
0 \rightarrow \mathscr{L}_{n}(K) \rightarrow \ldots \rightarrow \rightarrow_{1}(K) \rightarrow \mathscr{L}_{0}(K) \rightarrow \mathscr{F}(K) \rightarrow 0 .
$$

Taking the tensorproduct $B(K) \otimes_{\mathcal{O}_{U}(K)}$ we get the complex

$$
B(K ; \mathscr{L} .): 0 \rightarrow B\left(K ; \mathscr{L}_{n}\right) \rightarrow \ldots \rightarrow B\left(K ; \mathscr{L}_{1}\right) \rightarrow B\left(K ; \mathscr{L}_{0}\right) .
$$

Definition 2: The polycylinder K is called \mathscr{F}-privileged if the complex $B(K ; \mathscr{L}$.$) is split-exact in every degree >0$.

Remark: The property of being \mathscr{F}-privileged is independent of the resolution (R).

The exactnes of $B(K ; \mathscr{L})$ can be expressed by $\operatorname{Tor}_{i}^{\mathcal{O}(K)}(B(K), \mathscr{F}(K))=0$, for every $i>0$, and Tor is independent of the resolution (R). It is a little
more complicated to show, that the splitting property is independent of (R), and this is omitted.

Since $B\left(K ; \mathscr{L}_{i}\right)$ is a Banach space, the image and its complement are thus Banach spaces if K. is \mathscr{F}-privileged. In this case we define $B(K ; \mathscr{F})=$ $=\operatorname{Coker}\left(B\left(K, \mathscr{L}_{1}\right) \rightarrow B\left(K ; \mathscr{L}_{0}\right)\right)=B(K) \otimes_{\mathcal{O}_{U}} \mathscr{F}(K)$ and we get a $B(K)$ module, which is a Banach-space.

Warning : In the definition of split-exactnes, the subspaces are splitting vector spaces, but they are not splitting $B(K)$-modules in general.

We have the following important theorem about the existence of privileged polycylinders:

Theorem 2: Let U be an open subset of \mathbf{C}^{n}, and let \mathscr{F} be a coherent analytic sheaf on U. For any $x \in U$ there exists a fundamental system of neighbourhoods of x in U, which are \mathscr{F}-privileged polycylinders.

For the proof, see Douady: § 7, 4, th 1.
Example: (Curves in $\left.\mathbf{C}^{2}\right) \quad$ Let $U \subset \mathbf{C}^{2}$ be an open connected neighbour hood of the origin, and let $h: U \rightarrow \mathbf{C}$ be analytic and $h \neq 0$.

Let X be the curve given by h, that is $X=h^{-1}(0), \mathcal{O}_{X}=\mathcal{O}_{U} /(h)$. We have an exact sequence $0 \rightarrow \mathcal{O}_{U} \rightarrow \mathcal{O}_{U} \rightarrow \mathcal{O}_{X} \rightarrow 0$. Consider a polycylinder $K=K_{1} \times K_{2} \subset U$. By definition K is \mathcal{O}_{X}-priviledged if and only if $h: B(K) \rightarrow$ $B(K)$ is a split monomorphism.

Let \dot{K}_{j} denote the boundary of K_{j}, and define $\ddot{K}=\dot{K}_{1} \times \dot{K}_{2}(\ddot{K}$ is called the Šilov Boundary of K).

Proposition 1: (a) The following conditions are equivalent:
(i) $\quad h: B(K) \rightarrow B(K)$ is a monomorphism.
(i') $\exists a>0$ such that $\|h f\| \geqq a\|f\|, \forall f \in B(K)$.
(ii) $\quad X \cap \ddot{K}=\varnothing$.
(b) If $\left(K_{1} \times \dot{K}_{2}\right) \cap X=\varnothing$, then h is a split monomorphism (i.e. K is \mathcal{O}_{X} privileged).

Proof: (a) (i) $\Leftrightarrow\left(\mathrm{i}^{\prime}\right)$ is a well known fact from the theory of normed vector spaces.
(ii) \Rightarrow (i'). Assume $X \cap \ddot{K}=\varnothing$. If $f \in B(K)$, then it follows from the maximum principle that $\|f\|=\sup _{K}|f(x)|=\sup _{\ddot{K}}|f(x)|$. Since $h(x) \neq 0$
whenever $x \in \ddot{K}$, we get $a=\inf _{K}|h(x)|>0$. Hence $\quad\|h f\|=\sup _{K}|h f(x)| \geqq$ $\geqq a \sup _{K}|f(x)|=a\|f\|$.
(i') \Rightarrow (ii). Suppose that $X \cap \ddot{K} \neq \varnothing$ and $x=\left(x_{1}, x_{2}\right) \in X \cap \ddot{K}$. We choose an analytic function $f_{1}: U_{1} \rightarrow \mathbf{C}$, where $U_{1} \supset K_{1}$, and U_{1} is open, such that $f_{1}\left(x_{1}\right)=1,\left|f_{1}(z)\right|<1$ if $z \in K_{1}, z \neq x_{1}$. Similarly we choose an analytic function $f_{2}: U_{2} \rightarrow \mathbf{C}$, with the same properties. Consider the function $f \in B(K):\left(z_{1}, z_{2}\right) \rightarrow f_{1}\left(z_{1}\right) f_{2}\left(z_{2}\right)$. Since $h(x)=0$ it follows that the sequence $\left\{h f^{n}\right\}$ converges pointwise to 0 in K.

Applying Dini's theorem we get $\left\|h f^{n}\right\| \rightarrow 0$. From the inequality $a\left\|f^{n}\right\| \leqq$ $\leqq\left\|h f^{n}\right\|$ we get $\left\|f^{n}\right\| \rightarrow 0$, which is a contradiction, because for every $n: f^{n}(x)=1$.
(b) Use the Weierstrass preparation theorem (extended form).

Question. Does the condition (ii) imply that $h: B(K) \rightarrow B(K)$ is a split monomorphism?

IV. Flatness and privilege

§ 1. Morphisms from an analytic space into $B(K)$

Let S be an analytic space and K a polycylinder in an open set $U \subset \mathbf{C}^{n}$. We want to construct an \mathcal{O}_{S}-algebra homomorphism $\phi: \mathcal{O}_{S \times U}(S \times U) \rightarrow$ $\rightarrow \mathscr{H}(S ; B(K))$.
(a) Consider first $S=U^{\prime} \subset \mathbf{C}^{m}, U^{\prime}$-open. If $h \in \mathcal{O}_{U^{\prime} \times U}\left(U^{\prime} \times U\right)$ and $s \in U^{\prime}$, $x \in K$, define $(\phi(h)(s))(x)=h(s, x)$. Using the Cauchy integral, one can show that $\phi(h)$ is analytic. On the other hand its obvious that ϕ is an \mathcal{O}_{U},-algebra homomorphism.
(b) Let S have a special model in the polydisc Δ in \mathbf{C}^{m}, defined by a sheaf \mathscr{J} of ideals of \mathscr{O}_{Δ}, and let \mathscr{J} be generated by f_{1}, \ldots, f_{p}, V-a polycylinder neighbourhood of K in U. By Cartan's theorem B for a polycylinder, the sequence $0 \rightarrow \mathscr{J}(\Delta \times V) \rightarrow \mathcal{O}(\Delta \times V) \rightarrow \mathcal{O}(S \times V) \rightarrow 0$ is exact. If we denote by π the projection $\mathscr{H}(\Delta, B(K)) \rightarrow \mathscr{H}(S, B(K)),\left(f_{1}, \ldots, f_{p}\right) . \mathscr{H}(\Delta, B(K)) \subset$ $\subset \operatorname{Ker} \tilde{\pi}$. Therefore, because π is surjection, there exists a unique $\phi: \mathcal{O}(S \times V) \rightarrow \mathscr{H}(S, B(K))$, such that the diagram

