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FLATNESS AND PRIVILEGE

by A. DouADY

I. FrLAT MORPHISMS

§ 1. Analytic subspaces of an analytic space

Let Y, and Y, be closed analytic subspaces of an analytic space X, and
let them be defined by the 0y ideals J;, J,.

Definition 1 : We say that Y, is analytically included in Y,, and we write
Y,cY,, when J; o J,.

Remark : The analytic inclusion implies the set theoretic inclusion, but
the converse i1s not true.

Example: X = (C, 0c); J; = (x), J, = (x*). The space Y, is a simple
point, Y, is a double point, Y;$ Y,, while they have the same under-
lying set.

. Definition 2 : The subspace Y;U Y, is the smallest subspace of X con-
- taining Y, and Y,, and it is defined by J;nJ,. The subspace Y;nY, is the
biggest subspace of X contained in both Y, and Y,, and it is defined by
Ji+J5.

Remark : The underlying set of Y,uY, (Resp. Y;nY,) is the union
(Resp. intersection) of the underlying sets of Y; and Y,. However U and N
of analytic spaces do not satisfy the distributivity laws which hold in set-
theory: (Y;UY,) n Y5 contains Y; n Y3 and Y, n Y5, and therefore their
- union; similarly (Y;nY,)u Y; < (Y;UY;)n(Y,uY;). In general the
- converse inclusions do not hold.

Example: Let X = C? and Y;, Y,, Z be given by ideals (x—y), (x-y)
~and (x) respectively.

‘ (YiuY,)nZ is {0} provided with C{y}/(»?), while (Y,nZ)u
U (Y,nZ) is the reduced space { 0}. On the other hand: Y, n Y, < Z,
(YinY,)u Z = Z, while (Y;uZ) n (Y,uZ) is the space defined by the
ideal (x?, xy). Its local ring at the origin is C { x,y }/(x*, xp) in which x
- 1s nilpotent.
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Definition 3 : Let X’, X be analytic spaces, Y a closed analytic subspace
of X defined by J, and f = (f;, /1) : X'— X a morphism.

The inverse image of Y by f, f ~* (Y), is the analytic subspace Y’ of X’
defined by the ideal J' = f! (J) Oy..

The inverse image of a simple point x in X is called the f-fiber over x,
and is denoted by /7! (x) or X’ (x).

Proposition 1: If f == (fy, f1) : X'— X is a morphism of analytic spaces,
and Y is a subspace of X, then f "} (Y) ~ Yx X'.
X

Proof : Let T be any analytic space, and g T— X' a morphism. Then g
can be considered as a morphism from 7 to £ ! (Y)if and only if fo g can
be considered as a morphism from 7 to Y. Thus £ "' (Y) and X’ X X are

b'e

solutions of the same universal problem.

§ 2. Analytic pull-back

In the following we want to generalize the notion of inverse image of
a subspace.
We shall first recall the basic properties of the tensor product £ ® F,
4

where A4 1s a commutative ring and E, F are two A-modules.

(1 E®Q A" =E" (ne N)

(2°) If the sequence of A-modules F'—F—F"—0 is exact, then also the
sequence £ ® F'-E ® F-E ® F"—-0 1s exact. (Right exactness of
the tensor product)

(3°) If (F) ier; fij : F;—F; is an inductive system, then
E®IlimF;, =Ilim(E QF),).

— —
On the other hand these properties characterize completely the functor ®.
Definition 1 : Let f = (fy /') : X' X be a morphism of analytic spaces,

and & an Oy-module. Then f ;& is an f; Oy-module and @y, is also an fy Oy-
module (by 1 : fo Ox—0y).

The analytic pull-back f* & of & by fis defined by scalar extension:

f¥*E=f36® Oy
foOx
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