
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 14 (1968)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: FLATNESS AND PRIVILEGE

Autor: Douady, A.

Kapitel: I. Flat Morphisms

DOI: https://doi.org/10.5169/seals-42343

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-42343
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


FLATNESS AND PRIVILEGE

by A. Douady

I. Flat Morphisms

§ 1. Analytic subspaces of an analytic space

Let Y1 and Y2 be closed analytic subspaces of an analytic space X, and

let them be defined by the (9X ideals Ju J2.

Definition 1 : We say that Yx is analytically included in Y2, and we write
Y1 cz Y2, when Jx zd J2.

Remark : The analytic inclusion implies the set theoretic inclusion, but
the converse is not true.

Example: X (C, (9C); J1 (x), J2 (x2). The space Yx is a simple

point, Y2 is a double point, Y1 => Y2, while they have the same underlying

set.

Definition 2 : The subspace Y1 u Y2 is the smallest subspace of X
containing Y± and Y2, and it is defined by J1nJ2. The subspace Yxn Y2 is the

biggest subspace of X contained in both Yx and Y2, and it is defined by
J\ J2 •

Remark: The underlying set of Yxu Y2 (Resp. Yxn Yf) is the union
(Resp. intersection) of the underlying sets of Yx and Y2. However u and n
of analytic spaces do not satisfy the distributivity laws which hold in set-

theory: (Yxu Y2) n Y3 contains Y± n Y3 and Y2 n Y3, and theiefore their
union; similarly (I^n Y2) u Y3 a (^u Y3) n (72u Y3). In general the
converse inclusions do not hold.

Example: Let X C2 and Yu Y2, Z be given by ideals (x—y)9 (x+j;)
and (x) respectively.

(71uF2)nZ is {0} provided with C{y}/(y2), while (F1nZ)u
u (72nZ) is the reduced space { 0}. On the other hand: Yx n 72 c Z,
(Fin 72) u Z Z, while (I^uZ) n (72uZ) is the space defined by the
ideal (x2, xy). Its local ring at the origin is C {x, y }/(x2, xy) in which x
is nilpotent.
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Definition 3 : Let X', X be analytic spaces, 7 a closed analytic subspace
of X defined by /, and/ (/o,/1) : X'-+X a morphism.

The inverse image of Y by /, / ~1 7), is the analytic subspace Y' of X'
defined by the ideal J' =/1 (/) (9X>.

The inverse image of a simple point x in X is called the /:fiber over x,
and is denoted by/-1 (x) or X' (x).

Proposition 1 : If/ — (/o,/1) : X'-^X is a morphism of analytic spaces,
and 7 is a subspace of X, then /_1 (7) ~ YxX'.

x

Proof : Let T be any analytic space, and g : T-+X' a morphism. Then g
can be considered as a morphism from T to/-1 (7) if and only if / o g can
be considered as a morphism from 7 to 7. Thus/~1 (7) and I'xlare

x
solutions of the same universal problem.

§ 2. Analytic pull-back

In the following we want to generalize the notion of inverse image of
a subspace.

We shall first recall the basic properties of the tensor product E ® F,
A

where A is a commutative ring and E, F are two ^-modules.

(1°) E® An En (neN)
(2°) If the sequence of ^4-modules F'^F^F"-*0 is exact, then also the

sequence E ® F'-*E ® F^E ® F"-±0 is exact. (Right exactness of
the tensor product)

(3°) If (Ft) ieI; fij : Fj^Fi is an inductive system, then

E ® lim F i lim (E ® Ffi

On the other hand these properties characterize completely the functor ®.

Definition 1 : Let/ (/0 f1) : X'-^Xbe a morphism of analytic spaces,
and ê an tf^-module. Then/ is an/o (Pz-module and (9Xr is ^so an fo &x~

module (by/1 : Gx^&x).

The analytic pull-back f* S of ê by /is defined by scalar extension:

f*$>=fo$>® ®x>

fo&x
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Remark: The inverse image is a particular case of the analytic pull-

back.

In fact, if Y is a closed analytic subspace of X and/ : X'-»Xis a

morphism :

/* Oy — fo(®xlJy) ® ®X' — fo ®xlfo ^Y ® ®X'

fo@x fo®x

^ ('9X. * Of- 1(Y)

(The third isomorphism follows from the fact, that A/1 ® E ~ EjlE).
A

Elementary properties of the analytic pull-back :

(a) (/* S)x. 0 (/;®xV where

x — f0 (x') (since (x) commutes with inductive limits).

(b) f* ($® 3F) =/* /* ^ where and ^ are ^-modules.
ex

*

0*'

(c) If ^ is a coherent ^-module, then /* ê is a coherent -module.

In fact, S has a locally finite presentation:

and/* is compatible with cokernels,/* (0£)

Special case : The pull-back of vector bundle. Let (E, n) be an analytic

- vector bundle over the analytic space X, and /: J'->Ja
e x x '

^ e morphism of analytic spaces. The fiber product carries
I

TT r"

I TT1 I a unique structure of vector bundle over X\ such that /
xT —> x is a bundle morphism. We call this bundle E\

Proposition 1 : Let ê (Resp. $') be the sheaf of analytic sections of E
(Resp. E'). Then <T - /* ê.

Proof (Sketch): We have a f*0Ox linear morphism fo which
extends to a morphism/* ê-*ê'. We can prove that this is an isomorphism.
Since the question is local with respect to X', we can suppose that E is a

trivial bundle over X with fiber Cr, then S 0X. Also 0X. =f*0x. Theiefore

/* S S'.

§ 3. Introduction to flatness by examples

Let S be an analytic space. By analytic space over s we mean an analytic
space X provided with a morphism % : X-+S. Let S be a simple point in S,
and consider X (s) /-1 (s).

L'Enseianement mathém., t. XIV, fasc. 1. 4
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The main purpose of these lectures is to give a precise meaning to the
expression :

" X (s) depends nicely on s ", and to give a criterion for the " nice "
behaviour.

We begin with some examples.

Example 1 : X is the closed subspace on C2 defined by (y2 — x), S C
and 7i — 1st projection.

X f
Y _

I 2 simple points if s # 0

[ double point if s 0

Here the behaviour of X (A is nice.
0 5 £ W

Example 2 : X is the closed subspace of C2 defined by (xj), S C and
7i 1st projection.

X (s) is given by (x — s, xy), and
- X

(x-s Xv) \^-S'y)
' y) { (x) if

The first case is a simple point, the second one the,

i I

I I

_j

0 s ^ y-axis.

A similar example is the map of a point into C.

In both of these examples the dimension of the fiber makes a jump at

one point. We notice, however, that the exceptional point corresponds to
an irréductible component of X, and after removing this component n
behaves nicely.

This kind of removing is not possible in general, as the following
example shows:

Example 3 : X is given in C3 by (xz—y), and n is the projection on the

(x, y)-plane.

If s (x0, Jo), then the fiber X (s) is defined by

(pc-x09 J-Jo, xz-y)

^x-x0, J-Jo, Z- ^ if Xq A 0

(x, j) if x0 Jo 0

(1) if x0 0 jo A 0



The set of " nice " fibers is dense in X, so we cannot remove the z-axis and

still get a closed subspace of C3.

§ 4. Algebraic study offlatness

In the following all rings are commutative, with 1, and all modules are

unitary.

Definition 1 : An v4-module E is flat, if for every exact sequence of
A-modules

0->Ff->F-±F,,->0,

the sequence 0-+E (g) F'-^E ® F-+E ® F"-^0 is also exact. We can also

say, because ® is right exact, that E is flat, if for every injective homomor-

phism F'^F, E ® F'-*E ® F is also injective.

Examples of modules which are not flat :

(1) if A Z, E Z2 Z/2 Z, F F' Z; then the sequence
21

0-*Z->Z (21 : x'-»2x) is exact. But now Z2 (x) Z Z2, and the
21

homomorphism Z2-»Z2 is the zero, homomorphism, which is not
injective. So Z2 is not a flat Z module.

(2) If A C {x}, E C C {x}/(x), F F' C {x}, then the sequence
xl xl

0-+F-+F' (xl : p (x)^xp (x)) is exact. But the homomorphism E-+E
is not injective.

Proposition 1 : If A is an integral domain and E a flat A-module, then E
is torsion-free.

Proof: Let a e A, a =£ 0. Because A is an integral domain, the sequence
al al

0->AA^ (al : x->ax) is exact. Since E is flat, the sequence 0-+E-+E is
also exact. In other words E has no torsion elements.

Proposition 2 : If A is a principal-ideal domain, then E is flat if and
only if E is torsionfree.

Proof: See corollary of prop. 6.

Examples offlat modules :

(1) The inductive limit of flat modules is flat, because the inductive limit
preserves exactness, and it commutes with the tensor product.
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(2) Every free module is flat. In fact, if E is free and finite type, then
E An and E ® F Fn. If F'-*F is injective, so is F'n-+Fn too.

If E is an arbitrary free module, then it is an inductive limit of free
modules of finite type, and the flatness of E follows from (1).

(3) Let S be a multiplicative system in A. Then the ring of fractions S'1 A
is a flat ^4-module. In fact the ring S'1 A can be identified with an
inductive limit of free modules, so it is flat ((1) (2)). We assume for
simplicity that S has only regular elements. We can define in the set S
a partial order in the following way:

s' ^ s <=> 3 t g A ts s' (such a t is then unique).

Let Es A for every s e S, and if sf ^ s (i.e. s' ts) then let fs's be

the homomorphism t. IA : Es-+Es>. The family (Es)seS with the homomor-
phisms (/*') is an inductive system.

Let E limEs be the inductive limit of this system, and cps the canonical

homomorphism Es-+E. We shall define an isomorphism \j/ : E-^S~1A.
We first define for every ^ a homomorphism \j/s : Es A-+S~1A;

x->x/s. Now if s' s, then

tx tx X

s ts S

Therefore there exists a homomorphism \j/ : E-+S~1A, satisfying
\j/s i/j o cps for every se S.

Because every element of S~1A has the form a/s, ij/is surjective. On the

other hand if ij/ ((j)s (x)) 0, then \j/s (x) x/s 0. Thus x 0, and \j/ is

also injective.
The above proof can be extended to the general case, not assuming that

the elements of S are regular. The extended proof involves the notion of
inductive limit of an inductive system indexed by a category instead of an
ordered set.

From (1) and (2) above, any module which is the inductive limit of free

modules, is flat. Conversely:

Theorem 1 : (Daniel, Lazard)

Any flat module is a inductive limit of free modules.

For the proof: See C.R. Acad. Sei. Paris, 258 (1964), pp. 6313-6316.
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Some elementary properties of flat modules:

(1) If E and F are flat ^4-modules, then E®F is also flat. In fact, if G'->G
A

is injective, then F®G'-+F®G is injective, and also E®(F®G') -»

-> E®(F® G) is injective. The result follows from the assosiativity of
the tensor product.

(2) Let (p : A-*B be a ring homomorphism, and E a flat ^4-module. The

module B®E is a flat T-module.
A

If F is a T-module, then F®(B®E) (.F®B)®E F®E further
B A B A A

if F' and F are ^-modules, and F'-+F an injective homomorphism of
^-modules, we can consider this homomorphism as an injective
homomorphism of ^-modules. Because E is ^4-flat,

F'®a E-+F®a E is injective.

(3) Let <j) : A-+B be a ring homomorphism, such that B is a flat ^(-module.

If Fis a flat T-module, then Tis aflat A-module. Infact:if E'-*E is injective,

then E'®B-^E®B is injective, and also (E®B)®F'-*(E®B)®FAB A B A B

is injective. But (E'®aB)b®F' E'®AF; (E® aB)®bF =» E®AF.
If an ^-module E is not flat, we want to measure how far it is from

being flat. For this purpose we introduce the functor Tor.

Definition 2 : A free resolution ofE is an exact sequence: ...->Tn->Ln_ 1

...-+L1->L0->E-*Q, where all Li are free ^4-modules.

The complex of the resolution is the sequence
(L.) ...-^Ln->L„_1->...->L1->L0->0

Every module has a free resolution. Two resolutions are algebraically
homotopy-equivalent. Forming the tensorproducts Lt®F, we get

(L.(x)T) —>Ln® F—>Ln_i®F—>... —®F—>Lq®F—>0

Definition 3 :

TorAn (T, F) «s Hn (L.®F),i/rn TT /T s~~\ T?\ Ker(L&F-ÏL^^F)
Im (Ln +1®F->Ln ®F)

if n*t 1, and Toro (T, F) Coker (L1®F->L0®F) E®F.

Basic properties of Tor :

(1) Torn (E, F) is independent of the choice of the resolution (up to a
canonical isomorphism).
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(2) If we take a free resolution of F, we get Torn (F, E) Torn (F, F)
(Symmetry of the Tor). We can also define Torn (F, F) by taking two
free resolutions, one of E and one of F.

(3) If 0-+E'-+E->E"-+0 is a short exact sequence, then we get a long exact

sequence :

Tor„ (F', F)-+Tor„ (F, F)^Tor„ (F", F)

- Torn_i (F',F)->Torn_i (F, F)->Tor„_i {E'\ F)

-> Tori (F', F)->Tort (E, F)->Torx (F", F) ->

-> E'®F-*E®F^E"®F^0.

(4) Tor is compatible with inductive limit, i.e. if E lim (Et), then

Torn (lim Eh F) — lim (Tor„ (Ff, F)).

(5) We can define Tor„ (.E, F) by taking a flat resolution of E.

Proposition 3 : Let E be an ^4-module. Then the following conditions
are equivalent:

(a) E is flat.

(b) For all ^-modules F, and for all n ^ 1, Torn (E, F) 0.

(c) For all ^4-modules F, Torx (F, F) 0.

Proof: (a) => (è). If... -^Fn->Fn_1 -» L1 -+F0-+F-+ Ois a free resolution

of F, then the sequence

...-*F®Fn-+F0Fn_1-+...->F®L1->F(x)Fo-*F(x)F-> 0

is exact, thus Tor„ (F, F) 0 for all n ^ 1.

(&) => (c) clear, (c) => (a) : If the sequence 0 -> F' -> F -> F" -> 0 is exact,

so is also (by (3) above) Tort (F, F")-+E®F'->E®F^>E®FfJ Now

Tor! (F, F") 0, thus E is flat.

Proposition 4 : If / and J are two ideals in A, then Torf (.A/I, AIJ) =*

TnJ/L J.

Proof: From the exact sequence 0-^>I-+A^>A/I-+0, we get the exact

sequence :

Tori 04, Tori (A/I, A/J)^I®A/J^A®A/J^A/I®A/J^0
But now Tov1(A, A/J) 0 (A beeing ^4-free), and I®AjJ=I/I.J;
A®A/J A!J. Therefore the sequence 0-^Tori 04//, A/J)->I/I. J-+A/J is

exact, and Torx 04//, A/J) — Ker (///. J-^AjJ) InJjl. J.
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Example : Let U be an open set in Cn, and xeU. Further let X, Ya U be

two hypersurfaces, defined by I (/) and J (g). Supposing that/and g

do not have common factors: IxnJx Ix Jx, and

IxnJx
Tor! (@x,x9 ®Y,x) Tor®u,xlJx) ~~ j ~

j ~
_

*

X J X

Heuristic remark : The formula Torx (@XiX> x) ® expresses the fact

that X and Y are " in general position If for example X and Y are two

linears subspaces in C" of dimensions p and q, we have Torx (@x,x> ®y,x) 0

if dim (Xn Y) p+q-n, and Tor (<9XiX, 0YfX) =£ 0 otherwise.

Next we shall prove an elementary flatness criterion.

Proposition 5 : Let E be an ^4-module. The following conditions are

equivalent :

(a) E is flat.

(b) For all finitely generated ideals I of A, Tov1 (E9 A/I) 0.

(c) For all monogenous ^4-modules F, Tor! (.E, F) 0.

Proof : (a) => (b), by prop. 3.

(b)=>(c): Because Tor is compatible with inductive limit, we can

suppose, that Tor1 (E, Ajl) 0 for an arbitrary ideal I of A. But every

monogenous ^[-module F can be represented by A/I.
(c) =^> (a). By prop. 3 it is sufficient to prove that Tor: (.E, F) 0 for

any A-module F.

First consider the case, where F is finitely generated. We use induction,
supposing that Tort (E9 F) 0, when F has n generators. Let F have

(n+1) generators xl9 xn, xn+1. If F' is the submodule generated by
{*!,..., xn}, then F'czFand F" F/F' is monogenous. The exact sequence
0-+F' F F" -» 0 gives the exact sequence Torx (E, F') -» Torx (E, F) ->

Tor1 (F, F"). Now Tor! (F, F') Tort (E, F") 0, thus Torx (E9 F) 0.

In the general case, F can be considered as an inductive limit of finitely
generated modules, and because Tor is compatible with inductive limits, Tor!
(E9 F) 0.

Proposition 6 : Let A be an integral domain, and F an A-module. Then F
is torsionfree if and only if Torx (E, A/(a)) 0, for any element a e A.

al
Proof: If E is ^-module, aeA9 then the exact sequence 0->A->A->

al
->A/(a)->0 gives the exact sequence O-^Torj (E, In other
words Torj (E, Aj(a)) {x e E \ ax 0}, from which the result follows.
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Corollary : Let A be a principal ideal domain. E is flat if and only if E
is torsionfree.

Proof : We have already proved that, if E is flat, then it is torsion free.

The converse follows from prop. 6 and prop. 5.

The first flatness criterion for noetherian local rings is the following:

Theorem 2: Let A be a noetherian local ring with maximal ideal m;
k A/m, and E a finitely generated ^(-module. The following conditions
are equivalent:

(a) E is free.

(ih) E is flat.

(c) Tori (F, k) 0.

Proof : We have already proved {a) => {b) => (c).

(e) => (a) : We recall first Nakayma's lemma. If A is a local ring with
maximal ideal m; k=A/m, and E is a finitely generated y4-module, such that

k®E - E/mE 0, then E 0.
A

The module E k®E E/mE is a finitely generated vector space

over k. Let {x±. xr} be a base of E (over k), and {x1? xr} E representatives

of 5ci : s. Consider the homomorphism (j) : Ar-^E, (j) (al5 ar)

Yj ai xi- Denoting by R and Q the kernel and the cokernel of <£, we get

an exact sequence:

(*) 0->R->Ar-*E->Q->0

and R, Q are finitely generated ^4-modules. From (*) we get the exact

sequence

Ar®k-+E®k->Q(g)k->0AAA
But E E®k~kr Ar®k, so Q®k 0, and by Nakayama's lemma

A A A

Q 0.

Therefore ge have an exact sequence

0->R^Ar->E-*0.

From this we get: Tort (E, k)-+k®R-*kr^>E->0 (exact). Now: E~kr,
A

Tov1 ÇE, k) 0 (by assumption). Therefore k® R 0, and once more by
A

Nakayama's lemma R 0, thus E Ar, i.e. E is free.
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Proposition 7 : Let f : A-*B be a ring homomorphism, and let B be

A-flat. If I is an ideal of A, we write A A\T, B B/IB A®B. Let F
A

be a L-module, then: Torf (Ä, F) Torf (B, F) (i ^ 0).

Proof : We choose first a L-free resolution of F

->Ln+1 ->LnLi->Lo->L->0
If L. is the respective complex of resolution, then

B®L. B/IB ® L. Ä®(B®L.) Ä®L.
B B AB A

Because every Lt is L-free, and B is A-flat, every Lt is A-flat (Property 3

after Th. 1). Thus L. is a flat A-resolution, and

Torf (Ä, F)Hi(Ä®L.) Torf
A B

We shall next state the second flatness criterion for noetherian local rings.

Theorem 3 : Let A and B be two noetherian local rings, with maximal
ideals m, n;k A/m. If 0 : A->B is a local homomorphism (i.e. f (m)czn),
and F finitely generated B module then

F is A-flato Torf (k, F) 0

The proof of this theorem is much more difficult than that of th. 20 see

for example:
Bourbaki: Algèbre commutative, Chapter III § 5, thl, (i) o (Hi), p. 98.

The conditions in Bourbaki's theorem are here fullfilled:

1° A finitely generated module Lover a noetherian local ring B is idealwise

separated for n. (Ibid., § 5. 1. Ex. 1, p. 97.)

2° If (f> : A -> B is a local homomorphism, L is also idealwise separated
for m. (Ibid., § 5, prop. 2, p. 101.)

3° Also the flatness condition is fulfilled, because k is a field.

Remark: The main interest of the theorem lies in the fact, that it is

true without any assumption of finitness on B.

Corollary : If the assumptions are the same as in the theorem 3, and if
moreover B is A-flat, then

F is A-flat <=> Torf (B, F) — o

where B ~ B/mB.
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Proof: Torf (fc, F) Torf (.B, F), by prop. 7.

§ 5. Geometric applications of the flatness criterions

A) Flatness for finite morphisms

Proposition 1 : Let n: X-+S be a finite morphism (i.e. proper with finite
fibres) of analytic spaces. Then tl% (0X) is a coherent analytic sheaf over S.

The following conditions are equivalent:

(a) 7i is flat (i.e. for every xe X, (9X^X is a flat 0Ss-module, s re (%)).

(b) For every s, (tz% 0X)S is a flat 0SjS-module.

(c) 7i% &x is a locally free sheaf.

Proof: Because ti is finite n% (0X)S ® (9X}X, thus the only point
XETt — l(s)

to prove is {b) (c).

Now if (9X)X is a flat $5s-module, then (by theorem 2) (9X>X is free, and

a coherent sheaf whose fibers are free is a locally free sheaf.

Proposition 2: Let S be a reduced analytic space and ê a coherent

^-module. Let E(s) be the finite dimensional vector space (over C)
<2S® g Q ê is a locally free 0S s-module if an only if dimc E(s) is locally

S,s

constant.

Proof : If S is locally free, then dimc E(s) is locally constant. Suppose

now that dimcF^) is locally constant in an open set UaS, and that
d

0 is exact, d is determined by apxq matrix of analytic func-
d

tions on U, so it gives a morphism C^->C^ of trivial vector bundles over U.
ds

From the exact sequence @ps-+(99s-+é>s->0, we get (by making tensor-

products with Cs) the exact sequence:

d(s)
Cp Cl->E(s}->0,

which shows that d has constant rank in U. Thus Ker d and Im d are vector
bundles, and we can write

ci^f1®g19 cs F0@G0,

[ F1-+0
d:\

{ Gi-F0
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Now g ~ the sheaf of analytic sections of G0> therefore g is locally free.

Definition 1 : Let n : X-+S be a finite morphism of analytic spaces, and

s e S. For each x e X (s) (s), (9X C® 0 (9X,X is finite dimen-
S.s

sional vectorspace over C. Denote its dimension by v (x). Then the degree

v (s) of s is defined by v (s) £ v (x)-
xsX(s)

Theorem 1 : Let n : X^S be a finite morphism of analytic space and

let S be a reduced space. Then X is flat over S if and only if v (V) is locally

constant function of s.

Proof: v (s) £ dimc ®X{s),x dimc © 0x(s),*}
xeX(s) xeX(s)

dimc ® (C® ®x,x))
xeX(s) @S's

dimc C ® 7t^ (êx)s dimc (s).

The theorem follows from propositions 1 and 2.

Examples offlat morphisms

Example 1 : If n : X-+S is a local isomorphism near v, then n is flat
at x.

Example 2 : Consider § 2, Ex. 1. Here v (x) 1.

Examples of non-flat morphisms

Examples 1 : If Xœ S is a closed subspace, not open, v (5) is not locally
constant.

Example 2 : Let X be a subspace of C4 defined by the ideal intersection
of (x3, x4) and (x1—x1, x4 —x2) (which is equal to the product ideal) and
let 71 be the projection onto the (xl9 x2) — plane C2. Then X is a union of two
2-planes in C4, whose intersection is (0). When s^O. X (s) consists of two
simple points, so v (s) 2. X (0) is given by the ideal (x1? x2, x3, x3x4, x|),
thus v (0) 3.

Example 3 : Let S {(u, v, w) e C3 | v2 iiw} and n : C2->5 be the

map (x, y)-»(x2, xy, y2). This map identifies S with the quotient of C2 by
the equivalence relation idenfying (x, y) with —x, —y). However, % is not
flat, since for s e S, v (s) 2 if s 0 and v (s) 3 if ^ 0.
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B) Projection oj a product of analytic spaces

Theorem 2 : Let S and X be analytic spaces. If n : Sx X-+S is the
projection morphism, then % is flat, i.e. &Sxx/s,x) is a flat module for every
(s, x) e Sx X.

To prove this theorem we need first some homological algebra. Then

we shall show it in the particular case, when S is a manifold, and finally
in the general case.

(a) Koszul complex

Let A be a ring, M an .T-module and h1, hn homomorphisms M-*M,
which commute with each other, i.e. ht hj hj ht for every z,y.

If 1 g k ^ n, set Qk M/hi (M)+... + hk (M), and Q0 =* M, thus,
n ~

in particular, Qn Q MI £ ht (M),. Every hk induces a map/z^ Qk-±
i j

-*Qk-1-

Definition 2: The sequence (hu hj) is called regular if each of the

mappings hk{\^k^n) is injective.
The Koszul complex of the module M and of the mappings hk(l ^k^n)

K. K. [M\ hu hf\ is defined in the following way:

KtAn+iAn®M~M^ 0</<«.
We define the homorphisms dt : Ki->Ki_i (z>0) by A(x)x-+

i

®ht (x), where (ef) is the natural base of An. We also define s : K0-+Q as
n

the natural map : K0 M-+M/ hx (.M) Q. Using the fact that hu
i= 1

hn commute with each other, it is easy to verify that

(di-iO di){X®x) £(e,. a et a X)®hj(hi(x)) 0;
hj

also sd1 0. Thus K. is really a complex.

Theorem 3 (Poincaré-Koszul).

If (hl9 hn) is a regular sequence, then

[ Q if i 0

[ 0 if i > 0
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hiI
If hteA, it defines the map: A-+A9 which we denote also by ht. We say

that (A1? hn) is a regular sequence of elements if (hi /, hn I) is a regular

sequence.

Corollary. If (hl9...,hn) is a regular sequence of elements, then the

(")
Koszul complex K. K. [A; hl9 A„] « { a" 1 ^(n ^ is a free

resolution of Q AI(hi) ((hi) is the ideal generated by hu An)).

Example: If ^4 C {x1? xn}; ht then Qk =* A/(xl9 ...9 xk)

C {xfc+1, xn} and ß ßn C. The complex X K. [A; xl9 xn~]

is a free resolution of C.

(b) Proof of theorem 2, when S is a complex manifold

In this case we can take (9S)S — C {tl9 tm} A and if (9X}X

C{xl9 ^xn}/(fl9 ...,fp), then

® Sx X,(s,x) ~ ^ {f 1 • • • -^1 • • • 5 XB}/(/i • • ',fp) B

B is an ^4-module in a natural way.
By the corollary of the Poincaré-Koszul theorem K. K. [A; tl9 tm~\

in a free resolution of C. We want to compute the modules Torf (C, B) —

Ht(K.®B) (i>0).
It's easily seen, that we can consider the complex K.®B as a Koszul

HI
complex K'. K. [.B; tl9 tm~] (where tt : B-+B). But now the sequence

(tu tm) is regular, thus by the Poincaré-Koszul theorem Ht [K'~\ 0 if
i >0.

In particular: Torf (C, B) H1 [K.0Ü] H1 0. By the second

flatness criterion B is A-flat.

(c) The general case

The question being local, we can suppose that S a W c Cn9 where W
is open, and S an analytic subspace of W. Let S be defined by gl9...9gr. Then

SxXaWxX and 0S @w/(gl9 gr). On the other hand ®SxX —
®wxx/(gi> •••> gr) ®wxx- The last equality follows from

CJw

the fact, that if % : X->Sis amorphism, and Sf c S a subspace, Xf =n~1 (S')9

then @X' ®s*® ® (9X.
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Remark: This a particular case of the following proposition: if n and

n are two morphisms of which at least one is finite, then

/ @XxY -
«» >g /TT S S

We have proved that (9WxX is Gw-fLat, so by scalar extension &Sxx *s

Corollary : If X and S are two manifolds and n : X->S is a submersion,

then 7i is flat.

III. Privileged polycylinders

§ 1. Banach vector bundles over an analytic space

Let E be a Banach space and X an analytic space. We denote then by Ex
the trivial bundle XxE over X.

To define bundle morphisms, we first define the sheaf J^x (E) of germs
of analytic morphisms from X to E. If Ucz Cn is open, then the set XC (U,E)
of analytic morphisms from U into E consists of all functions g : U-^E
having at every point xeU a converging power series expansion.

Let now X' be a local model for X, i.e. X' is the support of the quotient
sheaf Ou!J, where UczCn is open and J is a coherent sheaf of ideals of (9V,

then Xex, (E) is the sheaf associated to the presheaf V-+XC V, E)/Jv X£ V, E)
(Fe U, F-open).

Remark : If X' is reduced, the sections of XPx. (E) are just the functions
from X' to E which are locally induced by analytic functions on open sets

in U.

The sheaf XPx (.E) is constructed with help of the local models X' of
X, i.e. Jfx(E)\X' X?x. (E), for every local model X'.

Definition 1 : The set of analytic morphisms from an analytic space X
into a Banach space E is the set XC (X; E) of sections of the sheaf XCx (.E).

Let if (.E, F) be the Banach space of all continuous linear mappings
from the Banach space E into the Banach space F.

Definition 2 : An analytic vector bundle morphism from Ex into Fx is an

analytic morphism from X into if (.E, F).
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