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Proposition 10. Let f: X—; Y, fy: X:; Y, g: Y:Z be meromorphic
mappings, assume that gAf exists. Then we have:

1) If fis proper, [f.f1] is proper,

2) If f and g are proper, gAf is proper,

3) If gnfis proper, f is proper,

4) If gnfis proper and f surjective, g is proper.

4. EXTENSION OF MEROMORPHIC MAPPINGS

We start with some classical results. Let D be a domain in C" and 4 # D
an irreducible analytic set in D. Let ¢ : D—A—C be a holomorphic
mapping and f : D— A—P, a meromorphic mapping. Then we have (see [2],
~ [8], [14] and the references given there):

1) If codim 4 >1, then ¢ and f have extensions over A.
2) Assume codim A == 1. Then

a) @ has an extension over A if for some z, € A there is a
neighborhood U of z, such that ¢ is bounded in U—(4 nU),

b) f has an extension over A if for some z, € A f has an extension
into a neighborhood of z,.!

We shall see that these statements can be generalized in some respects.?
Throughout this section, X and Y are irreducible complex spaces,
‘A# X is an irreducible analytic set in X, f: X—A4—Y a meromorphic

mapping. We shall study conditions under which f has an extension over A4,
which means that there exists a meromorphic mapping g : X— Y such that

glX-4=/.
The meromorphic mapping f can always be extended topologically to
a correspondence f : X—Y by setting G; = G, where the closure is with

respect to XX Y. On the other hand, if } : X—Y is an extension of f, then

1) The generalization 2a) of Riemann’s classical theorem on removable singularities is due to Kistler and
Hartogs. 2b) is due to Hartogs and E. E. Levi. 1) follows easily from 2); the statement 1) for holomorphic
functions ¢ is sometimes called “ the second Riemann theorem on removabl: singularities ¥ (2. Riemannscher
Hebbarkeitssatz)-

2) The extension problem for holomorphic maps is also treated in [1] and [6].
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]: — 7. We are thus led to study the properties of f. Of essential use is the
following extension theorem for analytic sets.

Theorem 1. Let Z be a complex space and M an irreducible.analytic
set in Z. Let further N be a pure dimensional (all irreducible components
have the same dimension) analytic set in Z— M such that dim N = dim M.
Then the closure N of N with respect to Z is an analytic set in Z if it is
analytic in at least one point of M.

This theorem was proved by Thullen [21] in the case where Z is a domain
in C* and where dim M = dim N = n—1. In [13] the theorem is stated
without restriction on the dimension of M but likewise for a domain Z
in C" (the special case treated by Thullen is used here in the proof). From
this one can obtain the theorem in the form above by using imbeddings of
open sets of Z into domains of number space.

Corollary 1. 1f dim N>dim M, then N is analytic in Z.
This can be deduced from Theorem 1 by imbedding arguments in an
obvious manner. A direct proof is contained in [§].

Corollary 2. Let Z and M be as in the theorem and { N;} a set of
mutually different irreducible analytic sets in Z— M for which dim N, >
dim M, and UN, is analytic in Z— M. If every neighborhood of a point
zo € M 1intersects an infinite number of sets N,, then every point of M
has this property.

This is a simple consequence of Theorem 1 and Corollary 1.

Proposition 11.  Let D be a domain in C", M an irreducible analytic set
in D, N a pure dimensional analytic set in D — M such that dim N = dim M.
Suppose there exists an analytic plane E, through a point z, € M such that
the following conditions hold:

1) E, is in general position with respect to M, i.e., dim (E, nM) =
dim E,-+dim M —dim D,

2) There exists a neighborhood U of z, such that for every analytic
plane E with dim E == dim E,, which is parallel to E, and which intersects
U, N nE is analytic in D (N is the closure of N with respect to D).

Then N is analytic in z, and hence in D by Theorem 1.

As to the proof we refer to [13], p. 301.

1) The statement actually proved in [13] is a little more special than Proposition 11, but by suitable
supplementary arguments one can obtain the proposition in the form above.
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We turn now to the study of two problems:
1) When is f weakly holomorphic ?
2) When is f continuous ?

If f is weakly holomorphic, then fis irreducible, because the irreducibility
of G, implies that of G7. Hence f is a meromorphic mapping if it is weakly
holomorphic and continuous.

Moreover, if fis weakly holomorphic, then the closure f=1(yyof £ ~'(y)
with respect to X is analytic in X for every ye Y: f () is analyticin X — 4
and f~'(y) is analytic in X; since f~1(y) < f '(y)and f-1(y) N (X — A)
= 71y n (X —A) = f"1(p), it follows that f~1(y) is analytic in X.

We assume now, in the rest of this section, that dim X —dim Y > dim A4.
Weset Z = XXY, M =AXY, N= G,. Thendim M = dim 4+dim ¥,
dim N = dim G, = dim X and, by our assumption, dim N > dim M. If
dim X—dim Y>dim 4, i.e., if dim N>dim M, Corollary 1 of Theorem 1
implies that f is weakly holomorphic. Furthermore, we have

Proposition 12. Assume dim X—dim Y == dim A. Then the corres-
pondence f is weakly holomorphic if there exists a non-empty open set
V< Y such that the closure f=1(v) of f ~! (v) with respect to X is analytic
in X for allveV.

Proof. The condition dim X—dim Y = dim A implies that dim N =
dim M. Hence, by Theorem 1, N = Gj is analytic in Z = XX Y, ie,
f is weakly holomorphic, if there is a point of M = AX Y in which N is
analytic. We show that this is the case for points of AXV. Choose a
point (a,, vy) € A X V such that A4 is irreducible in a, and such that v, is
an ordinary point of Y. There are open neighborhoods U; < X of a, and
U,V of v, with the following properties: A" = A NU; is an irreducible
analytic set in U,; U; can be mapped biholomorphically onto an analytic
set X' in a domain D, of a number space C"!; U, can be mapped biholomor-
phically onto a domain D, of a number space C"2 (n, =dim Y). Itis enough
to show that the closure N’ of N' = G, n(U, X U,) with respect to U, x U,
is analytic in U; X U,. Set D == D; X D,, M’ = A’ x D, and, for we D,,
E,=C""x{w)}. Then we have dim (E,nM") == dim (4'X{w})=
dim A’ = dim 4, on the other hand dim E,, + dim M’ — dim D = n,+
(dim A" + n,)—(n; + n,) = dim A. The hypothesis on the analyticity of

£~ (v) for all v € V implies that N’ nE,, is analytic in D for every we D,.
~ Hence, by Proposition 11, N7 is analytic in D; then N’ is, in particular, an-
alyticin X' X D, = U; X U,.
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Concerning the continuity of f we have

Proposition 13. The correspondence f is continuous if it is continuous
at one point g, € 4.

Proof. We assume first that the topology of ¥ has a countable base.
Then f is continuous at a € 4 if and only if the following condition holds:
If (x,) and (»,), v = 1,2, ..., are sequences of points such that x, e X—4,
x,—a, y, € f(x,), then the sequence (y,) has a point of accumulation in Y.
Suppose that fis continuous at a point a, € 4 and let (x,), (»,) be sequences
as above. Then the fibres f ~! (y,) are non-empty analytic sets in X —4,
and the condition dim X—dim Y > dim 4 implies dim F,*’> dim A4 for
every irreducible component F,® of £ ~*(y,). Suppose that L = uf ~'(3,)
is not analytic in X— 4. Then there exists a subsequence (y,.) such that one
can find points x;ef ! (»,,) which converge to a point xo€ X—A. By
continuity at x, it follows that (y,,) has a point of accumulation on £ (x).
Let now L be analytic in X— 4. Assume first:

(x) There are infinitely many fibres f~* (»,,) which have a common
irreducible component N.

In this case we take a point of N and use similarly the continuity of f
at this point. Suppose now that («) is not satisfied. Then we apply Corol-
lary 2 of Theorem 1 to the set of irreducible components F,*) of the fibres
71 (y,). Since every neighborhood of a intersects infinitely many com-
ponents F,*) (this implies, in particular, that the closure Lof L with respect
to X is not analytic in a), the same holds with respect to a,. The y, have then
a point of accumulation on f(a,) because f is continuous at a,.

Now we drop the assumption that Y has countable topology. We
remark first: To show that f is continuous at a € 4 we may replace X by
any irreducible open subspace which contains the points ¢ and a,. There-
fore we may assume that X has countable topology. Secondly: All points
of Y used in the proof above belong to the topological subspace f(X—A4) U
f (a,) = Y which has countable topology since X has. If we now restrict ¥
to an irreducible open subspace with countable topology containing
f(X—A)Uf (ap), the proof given above applies.

Corollary. 1If dim X—dim Y>dim 4, then fis always continuous.
In this case the hypothesis on the continuity of f at a point a, € 4 is
not needed in the proof of Proposition 13: We have now dim F,**)>dim A.
If L is analytic in X— A4, Corollary 1 of Theorem 1 implies that L is analytic
in every point of A4, and the condition (&) is necessarily satisfied.
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Combining the preceding statements we have the following result.
Theorem 2. Letf: X—A—Y be a meromorphic mapping and dim X —
dim Y>dim 4. Then f is a meromorphic mapping if and only if

1) there exists a non-empty open set ¥'< Y such that /! (v) is analytic
in X for all veV, and

2) f is continuous at a point a, € 4.

If dim X—dim Y>dim 4, then f is always a meromorphic mapping.

Corollary. Assume there is an open subset Uc X and a compact set
Kc Y different from Y such that Und # @ and f(U—(UnA4))cK. Then f
1S @ meromorphic mapping.

To conclude this frem Theorem 2 we remark first that the set V= Y—K
satisfies the above condition 1): If v € V, then # ~* (v) does not intersect U,

hence f ! (v) is analytic in every point of U4 and therefore, by Theo-
rem 1, analytic in X. On the other hand, f is continuous at every point
ao € UnA. For f (a,) is compact since it is a closed subset of K. Moreover,
let V, be a neighborhood of f(a,); we assert that there is a neighborhood
U, of a, such that f(U,)<V,. If this were false, then there would exist
points x in U— (U nA) arbitrarily near g, such that f'(x) n(K— (K NV)) # .
But then it follows that f () "(K—(KNV,)) # @, which is a contradiction.

As to the extension of holomorphic maps we state:

Theorem 3. Let X be, in addition to the earlier assumptions, a complex
manifold and f: X—A— Y a holomorphic map. Then

1) If dim X—dim Y>dim A1, fis a holomorphic map,

2) If dim X—dim Y = dim 4-+1, then f is either a holomorphic map
or f is a meromorphic mapping and f(a) = Y for all a € 4.

Proof. Assume dim X—dim Y> dim 4-+1. Then, by Theorem 2, f is
a meromorphic mapping; if S = S(f) = @, f is even a holcmorphic map.
Suppose S#,set T :}"1 (S) and let T,, be an irreducible component of T.

Set S, = f(T,). By Remmert’s mapping theorem S, is an irreducible
analytic set in X. We have

dim T, = dim S,+ inf dim ,(g™* (g (z)) where g = f| T, ,

zeD0

furthermore dim S, <(dim S<dim A because ScS,cA4. Every fibre
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¢! (g(2)), z € Ty, is mapped injectively into ¥ by £, hence dim (g1 (g(2)) <
dim Y. Thus we obtain the inequalities

(*) dim T, <dim A-+dim Y<dim X—1.

Now we shall see that dim 7, = dim X—1. Therefore we have equality
in (*), hence dim X—dim Y = dim 44+1. We obtain also dim $, =
dim S = dim 4, hence S, = S = 4, since A is irreducible; moreover,

dim {g~! (a)) = dim Y for every a € 4, consequently f (a) = f(g~ (@)=Y

In order to show that dim T, = dim X—1, we use the following
theorem due to Grauert and Remmert [5] ( a proof was also given by
Kerner [7]):

Let X be a complex manifold, Z a normal complex space, K an analytic
set in Z with codim K>2, t : Z— X a holomorphic map such that | Z—K
is locally biholomorphic. Then 7 is locally biholomorphic.

Now assume first that Gy is a normal complex subspace of XX Y. The

holomorphic map }v‘_ G7— X is locally biholomorphic in a point { € G5 if

and only if (e T :;f"l (S). Hence, by the theorem of Grauert and Rem-
mert, 7 is puredimensional and dim 7 = dim X—1. If G7 is not normal,

we take a normalization (C~? v) of Gy and look at ;70 v :NG——>X and

~

= ( f @ v) 1 (S) instead of f and T. We see then that TlS puredimensional

with dim T = dim X— 1, but then it follows that v ( T) = T has the same
properties.

Remark. 1If Y is not compact, then f is always a holomorphic map
under the hypothesis of Theorem 3 since f (a) is compact for a € A. If the
assumption that X be a complex manifold is dropped, then both assertions
of Theorem 3 become false as can be shown by examples.

5. MAXIMAL MEROMORPHIC MAPPINGS

All complex spaces in this section are irreducible. Before we state the
problem we give the necessary definitions.
Letf: X ~ Y be weakly holomorphic and not empty. The rank rk f of f

~ is by definition the global rank of the holomorphic mapping f G,—7,1ie,
rk /' = sup codim, f (f (2)).

zer
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