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Proposition 5. If f: X e Y is continuous and Y is a Hausdorff space,

G, is closed in XX Y.

Definition 2. A correspondence fis proper if f and f ~! are continuous.!
Proposition 6. If f: X—; Y, fi: Xl—k> Y, g: Y?Z are proper, then

fxf; and g o f are proper.

The junction of two proper correspondences need not, however, be
proper. The diagonal mapping (I, Iy) serves as an example if X is not a
Hausdorff space. If X is Hausdorff, the junction ( f, /') of proper corres-
pondences f: X ry Yand f': X = Y’ remains proper.

Proposition 7. Let f: X re Y, fi: X —+ Y, g: Y~k+ Z be continuous

where all the spaces are locally compact. Then we have:

1) If fis proper, then (f, f;) and ( f;,f) are proper,

1

2) If g o fis proper and g~ surjective, then f is proper,

3) If g o fis proper and f surjective, then g is proper.

2. HOLOMORPHIC CORRESPONDENCES

We consider reduced complex spaces (X, 08) where X is assumed Haus-
dorff and where the structure sheaf 6 has no nilpotent elements. For the

definition and related concepts we refer to [8]. The structure sheaf is usually
omitted in the notation.

Definition 3. Let X and Y be complex spaces. A correspondence
f: X re Y is called holomorphic if

1) fis continuous,

2) the graph G, is an analytic set in XX Y.
If only the condition 2) is fulfilled, f is said to be weakly holomorphic.
Letf: X > Y be weakly holomorphic. Then f ~* is weakly holomorphic;

furthermore, if A< X is analytic in X, f [ A is weakly holomorphic. Since

j\”/“1 (x) = G,n({x}XxY), xeX, is analytic in G,, f(x) =}<;’_1(x))

1) Compare [3] where another notion of proper correspondence is defined.



is analytic in Y. If f is holomorphic and 4’ Y analytic in Y, then, since

]/”\ ~1 (4')is analytic in G, and}”is proper, f "1 (4") = f(F ' (A")) is analytic
in X by Remmert’s mapping theorem [11] (see also [8], p. 129).

The correspondences xfi, (f.f1), and g o f are holomorphic if the
correspondences f, f1, f 1, and g are holomorphic. :

A weakly holomorphic correspondence f: X = Yis called reducible

resp. irreducible if G, is reducible resp. irreductible. G, is always a union
of irreducible components G; let f; : X = Y be the (weakly holomorphic)

correspondence whose graph is G). Then the correspondences f; are called
the irreducible components of f and we write f = U f.

3. MEROMORPHIC MAPPINGS

Let f: X = Y be a correspondence where X is a topological space

A point x € X is called a distinguished point of f if there is a neighborhood
U of x such that the restriction f [ U is a mapping (in the usual sense).

Definition 4. A holomorphic correspondence f: X re Y is called a

meromorphic mapping if the following holds. If X is irreducible, then
1) f1s irreducible,

2) There exists a distinguished point x, € X of f.
In the general case, if X = U X is the decomposition of X into irredu-
cible components, then there exist holomorphic correspondences f; : X —
’ k

Y such that
1) fi] X is a meromorphic mapping and f; | X— X ) is empty,
2) f= Ufs

A meromorphic mapping f is bimeromorphic if f ~' is meromorphic.

We use the notation f': X~ Y for a meromorphic mapping. Note that

a meromorphic mapping is in general not a mapping in the strong sense.
, An example of a meromorphic mapping is the correspondence f of C?

onto the extended complex plane P, defined by f(z;, z,) = “1 if (24, 2,) #

2y

(0, 0), and (0, 0) = P;.
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