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Remark. 1f X is not separated, an intersection of two open Stein
subspaces of X need not be Stein; take f.i. for X two copies of C?, identified
everywhere except at O; there is an obvious covering of X by two open
subspaces, identicals with C?; but their intersection is C*>—{o}, and
therefore is not Stein!

4.4.  The finiteness theorem

Theorem 4.4.1. (Cartan — Serre). Let X be a compact analytic space,
and F be a coherent analytic sheaf on X. Then, for every p > 0 H? (X, F) is
separated and finite dimensional.

We shall give two proofs of this theorem ; both are interesting for
further applications.

Ist proof. Let { X;} and {X;'} be two finite coverings of X of the type
considered in the previous articles, such that, for every i, X’; is relatively
compact in X;. Then, if we denote by % (resp. %) the covering {X;} (resp.
{ X }), the natural restriction map C? (%, F) —» C? (%', F) is compact.

Consider now the map
(p,d): ZP (U, F) ® C*" " (U',F) —» Z* (', F)

this map is surjective, and we have (, dp) = (p, 0) + (0, d), (p, 0) being
compact ; then the following lemma proves that Im (0, d) is closed and
finite codimensional, q.e.d.

Lemma 4.4.2. Let E and F two Frechet spaces, u; and u, two linear
continuous maps E — F such that u; + u, is surjective, and u,; compact.
Then Im (u,) is closed and finite codimensional. For the proof, see e.g. [5].

2nd proof. Consider % and %' as above, and consider the map
(p,d) C*~Y(U,F)|Z°"*(U,F) —»[C* " (%' ,F)|Z"" " (U',F)] ® Z* (%, F)
(p, d) is clearly injective. I claim that its image is closed: In fact, since
p:HP (U, F)— HP (%', F) is injective, this image consists of the pairs
(@', b),a’ € CP"Y (U',F), be Z"(%, F) such that da’ = p b, which proves the
assertion.

Now we have (p, d) = (p, 0) + (0, d) and (p, 0) is compact. By
a well-known lemma, it results that Im (0, d) is closed, which means that
H? (U, F) is separated.

Finally, since p is compact, and is an isomorphism, it follows that the
identity map of H” (%, F) into itself is compact ; therefore this space is
finite dimensional ; this proves the theorem.
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