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Remark. If X is not separated, an intersection of two open Stein

subspaces of X need not be Stein; take f.i. for X two copies of C2, identified
everywhere except at O; there is an obvious covering of X by two open
subspaces, identicals with C2; but their intersection is C2—{o}, and
therefore is not Stein

4.4. The finiteness theorem

Theorem 4.4.1. (Cartan — Serre). Let X be a compact analytic space,
and F be a coherent analytic sheaf on X. Then, for every p > 0 Hp (X, F) is

separated and finite dimensional.
We shall give two proofs of this theorem ; both are interesting for

further applications.

1st proof. Let { Xt } and {X/} be two finite coverings of X of the type
considered in the previous articles, such that, for every z, X\ is relatively
compact in Xt. Then, if we denote by °U (resp. %') the covering {XJ (resp.

{ X/ }), the natural restriction map Cp F) Cp (°U', F) is compact.

Consider now the map

(p, d) : Zp F) ® CP~1(%\F) -+ZP(<%',F)

this map is surjective, and we have dp) (p, 0) + (0, d), (p, 0) being

compact ; then the following lemma proves that Im (0, d) is closed and
finite codimensional, q.e.d.

Lemma 4.4.2. Let E and F two Frechet spaces, ux and u2 two linear
continuous maps E -> F such that ux + u2 is surjective, and zq compact.
Then Im (u2) is closed and finite codimensional. For the proof, see e.g. [5].

2nd proof. Consider °U and 6U' as above, and consider the map
(p,d) Cp-1(^,F)/Zp~l(^,^) -+[Cp-1(q/f,F)IZp-1(W',Fy\ ®ZP(%,F)
(p,d) is clearly injective. I claim that its image is closed: In fact, since

p : Hp (tfl, F) -> Hp (%', F) is injective, this image consists of the pairs

(ä\ b), a' e Cp~1 (flY',F), b e Zp(fU, F) such that da' — p b, which proves the

assertion.

Now we have (p, d) (p, 0) + (0, d) and (p, 0) is compact. By
a well-known lemma, it results that Im (0, d) is closed, which means that
Hp (<W9 F) is separated.

Finally, since p is compact, and is an isomorphism, it follows that the

identity map of Hp (fU, F) into itself is compact ; therefore this space is

finite dimensional ; this proves the theorem.
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