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ly, let o/ be a sheaf of 0y-algebras, which is coherent as sheaf of ¢0y-modules.
Then there exists an analytic space (X,0y) and a finite morphism f : (X, Oy)
— (Y, Oy) such that f,, (O) is isomorphic with ./ as sheaf of @y-algebras ;
the triple (X, 0Oy, ) is unique up to an isomorphism.

We do not prove this proposition here and refer to Houze! [6] or
Narasimhan [9] for this proof. We note also that a proof of the direct part
can be given along the same lines as theorem 3.1.3, combined with the
fact that direct images under finite morphism preserve exact sequences of
sheaves of Oy-modules (in other words, that higher direct images are zero).
We note also that, for proper morphisms (not necessarily finite), a much
deeper result has been proved by Grauert [2], [3].

Finally, we remark that, in the real case, proposition 3.3.2. is false (take,
for instance, X the submanifold of R* defined by x, — x,> = 0, ¥ = R and
f = the projection on the x,-axis ; f, (Ox) has support x, > 0, which is
not an analytic subset of R, hence f, (0y) cannot be coherent!)

CHAPTER 4.

THE FINITENESS THEOREM

In this chapter, we consider only complex analytic spaces, separated
and having a countable basis of open sets.

4.1. Stein spaces
Let (X, Oy) be an analytic space, and K a subset of X ; we denote, as

usual by K the set

[xeX|Vfel(X,0,):|f(x)] <sup|f(y) I}
l

ye K
Definition 4.1.1. a) (X, Ox) is called holomorphically convex if, for any

K compact < X, K is compact ;

b) (X, 0y) is called a Stein space if it is holomorphically convex, and if, for
any x € X, there exist sections fy, ..., f, € I' (X, Ox) with f; (x) = 0, such
that x is an isolated point of the counter-image of 0 in the morphism
(X, Ox) — C? defined by fi, ..., f,, (This last property can also by expressed
as the fact that the morphism of germs: (X, Oy, x) — (C?, 0) defined by

f1» -s fp 18 finite).
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If X is a Stein space, X, is obviously also a Stein space. The converse
is also true (see Grauert [2]).

Theorem 4.1.2. (“ Theorems A and B” of Cartan-Oka). Let F be an
analytic coherent sheaf over a Stein space (X, Ox). Then
1) For any x € X, I' (X, F) generates F, over Ox .
2) Forp > 1, one has H? (X, F) = 0
This theorem will not be proved here (see f.i. [5] for the reduced case ;
the general case is similar). We will need here only the following special case :
Let (X, O) be a closed analytic subspace of a domain of holomorphy

U < C" ;if Fis an analytic coherent sheaf on X, let F be the trivial extension
of Fto U ; then 1?7 is a coherent sheaf of ¢, modules, and theorems 4 and B

are valid for Ij’ : therefore, they are true for F.

4.2. Topology on I' (X, F).
1. Let X be a closed analytic subspace of a domain of holomorphy

U < C"; and, with the previous notations, suppose that F admits a finite
presentation 1.e. an exact sequence of sheaves of ¢;-modules

0t 500 LF S0,
Applying theorem B to the exact sequences
0—->Imoa—0F »F 50 and 0-Kera — 0} >Ima -0
we get an exact sequence

I'(U,00)" %01 (U,0,)"™ % (U, F)-0.

The space I' (U, 0y), with the topology of uniform convergence on com-
pact setsis a Frechet space. And we claim that, for that topology, Im I' (U, «)
is closed. For, if f'is adherent to Im I" (U, ), it results easily from Krull’s
theorem (see Appendix) that, for x € U, we have f, € Im («,), hence fe I’
(U, Im a) ; but, according to theorem B, the mapping I’ (U, 0y) —»
I' (U, Im o) is surjective.

Now, with the quotient topology, I' (X, F) ~ I' (U, 1*:) ~ I' (U, Oy)
/Im I' (U, «) is a Frechet space. This topology does not depend on the
given presentation of F (in fact, it does not even depend on the imbedding

X — U, but we shall not need it here). For, suppose we have a second
presentation
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