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~ Denote now by # (resp #) the coherent sheaf of ideals generated in U
(resp. V) by the f;'s ( resp. the g';s). We have &*(#), = S,, hence, since ¢
is finitely generated by restricting U and V if necessary, we have &* ((#) < .
Finally we take X = supp 0y/F, Ox = Oy/F | v and the same for Y ; it is
clear that @ induces the required morphism (Y, 0y) —» (X, O0x).

Finally, if two morphisms ¢, ¥ : (X, 0) — (Y, 0) induce the same homo-
morphism Oy o — Oy o, We have to prove that ¢ and Y are equals. We may
assume that Y is given by a local model (Y, 0y | 7| Y) for some coherent
sheaf ¢ of ideals on an open set V' <= C™ ; by composition with the injection
Y — V¥, we may restrict ourselves to the case where ¥ = C™ ; the morphisms
¢ and  are now given by sections f, g e I' (X, 0x™), and the hypothesis
means that the germs of f and g at 0 coincide ; hence f and g coincide in a
neighborhood of 0 in X, which proves the assertion.

3.3 Finite morphisms

Let /' : (X, 0) - (Y, 0) be a morphism of germs of analytic spaces. Then
fis called “finite ” if the corresponding homomorphism f* : Oy o = Oy
makes Oy , finite over Oy ,. According to the preparation theorem 3.1.3. in
order that f be finite, it is necessary and sufficient that Oy /M (Oy o) Ox o
be finite over C ; in geometrical terms, this means that the germ of space
7 71(0) is finite over the point 0 (see § 1.3, example 4).

In the global case (complex or real), we give the following definition:

Definition 3.3.1. A morphism of separated analytic spaces f=.(f,, f1):
(X, Ox) — (Y, Oy) is finite if the following properties hold:

1) f1is proper (i.e. f is proper).
2) For any point x € X, the induced morphism of germs £, : (X, 0y, x) >
(Y, Oy, fo (x)) is finite.

In the complex case, we have the following results :

Proposition 3.3.2.  fis finite if and only if fis proper and, for any b € ¥,
the set f,~ ' (b) is finite.

This proposition is more or less equivalent to the * Nullstellensatz ”:
for the proof see e.g. Houzel [6] or Narasimhan [9]. In the real case, the
part “ if ” of this proposition is not even true when Y'is a point : for instance
the subspace of R? defined by .# = (coherent sheaf of ideals generated by
x1* -+ x,%) has support 0 ; but R { x;, x, }/(x;% + x,2) is not finite over R.

Proposition 3.3.2. 1If f:(X, Oy) - (Y, 0y) is a finite morphism, then
the direct image f, (0y) is a coherent analytic sheaf of Oy-modules ; converse-
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ly, let o/ be a sheaf of 0y-algebras, which is coherent as sheaf of ¢0y-modules.
Then there exists an analytic space (X,0y) and a finite morphism f : (X, Oy)
— (Y, Oy) such that f,, (O) is isomorphic with ./ as sheaf of @y-algebras ;
the triple (X, 0Oy, ) is unique up to an isomorphism.

We do not prove this proposition here and refer to Houze! [6] or
Narasimhan [9] for this proof. We note also that a proof of the direct part
can be given along the same lines as theorem 3.1.3, combined with the
fact that direct images under finite morphism preserve exact sequences of
sheaves of Oy-modules (in other words, that higher direct images are zero).
We note also that, for proper morphisms (not necessarily finite), a much
deeper result has been proved by Grauert [2], [3].

Finally, we remark that, in the real case, proposition 3.3.2. is false (take,
for instance, X the submanifold of R* defined by x, — x,> = 0, ¥ = R and
f = the projection on the x,-axis ; f, (Ox) has support x, > 0, which is
not an analytic subset of R, hence f, (0y) cannot be coherent!)

CHAPTER 4.

THE FINITENESS THEOREM

In this chapter, we consider only complex analytic spaces, separated
and having a countable basis of open sets.

4.1. Stein spaces
Let (X, Oy) be an analytic space, and K a subset of X ; we denote, as

usual by K the set

[xeX|Vfel(X,0,):|f(x)] <sup|f(y) I}
l

ye K
Definition 4.1.1. a) (X, Ox) is called holomorphically convex if, for any

K compact < X, K is compact ;

b) (X, 0y) is called a Stein space if it is holomorphically convex, and if, for
any x € X, there exist sections fy, ..., f, € I' (X, Ox) with f; (x) = 0, such
that x is an isolated point of the counter-image of 0 in the morphism
(X, Ox) — C? defined by fi, ..., f,, (This last property can also by expressed
as the fact that the morphism of germs: (X, Oy, x) — (C?, 0) defined by

f1» -s fp 18 finite).
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