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Denote now by «/ (resp f) the coherent sheaf of ideals generated in U

(resp. V) by the f/s | resp. the g'js). We have $*C/)0 c hence, since f
is finitely generated by restricting U and V if necessary, we have (f) a J.
Finally we take X supp (9VIJ>, 0X | x and ^e same for Y ; it is

clear that $ induces the required morphism (F, &Y) (F, &x)-

Finally, if two morphisms cp, \j/ : (X, 0) -> F, 0) induce the same homo-

morphism @Y,o Ox>Q, we have to prove that cp and ijj are equals. We may
assume that F is given by a local model (F, (9V \f\ F) for some coherent
sheaff of ideals on an open set V a Cm ; by composition with the injection
F -» V, we may restrict ourselves to the case where Y Cm ; the morphisms
(p and \j/ are now given by sections f, g e T (X, (9xm), and the hypothesis
means that the germs of/ and g at 0 coincide ; hence / and g coincide in a

neighborhood of 0 in F, which proves the assertion.

3.3 Finite morphisms

Let/ : (F, 0) (F, 0) be a morphism of germs of analytic spaces. Then

/ is called " finite " if the corresponding homomorphism /* : 0Yf0 ->
makes o finite over 0Y>0. According to the preparation theorem 3.1.3. in
order that / be finite, it is necessary and sufficient that 0X^/^R (0Y,o) ®x,o
be finite over C ; in geometrical terms, this means that the germ of space
/-1(0) is finite over the point 0 (see § 1.3, example 4).

In the global case (complex or real), we give the following definition:

Definition 3.3.1. A morphism of separated analytic spaces /=<(/0?/1):
(F, @x) -» (F, 0Y) is finite if the following properties hold:

1) /is proper (i.e./0 is proper).

2) For any point x e F, the induced morphism of germs fx : (F, x)
(F, 0y,/o (x)) is finite.

In the complex case, we have the following results :

Proposition 3.3.2. f is finite if and only if/is proper and, for any b e F,
the set/0_1 (ô) is finite.

This proposition is more or less equivalent to the "Nullstellensatz";
for the proof see e.g. Houzel [6] or Narasimhan [9]. In the real case, the
part " if " of this proposition is not even true when F is a point : for instance
the subspace of R2 defined by J (coherent sheaf of ideals generated by
Al2 + *22) has support 0 ; but R { x1? x2 }/(x/ + x22) is not finite over R.

Proposition 3.3.2. If /: (F, Gx) -> (F, ®Y) is a finite morphism, then
the direct image/* (Gx) is a coherent analytic sheaf of 0y-modules ; converse-
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ly, let sé be a sheaf of $ralgebras, which is coherent as sheaf of $F-modules.
Then there exists an analytic space (X,0x) and a finite morphism/ : (X, (9X)

-> (Z, 6y) such that/* ($z) is isomorphic with j/ as sheaf of 0y-algebras ;

the triple (X, 0X,/) is unique up to an isomorphism.
We do not prove this proposition here and refer to Houze! [6] or

Narasimhan [9] for this proof. We note also that a proof of the direct part
can be given along the same lines as theorem 3.1.3, combined with the
fact that direct images under finite morphism preserve exact sequences of
sheaves of ^/-modules (in other words, that higher direct images are zero).
We note also that, for proper morphisms (not necessarily finite), a much
deeper result has been proved by Grauert [2], [3].

Finally, we remark that, in the real case, proposition 3.3.2. is false (take,
for instance, X the submanifold of R2 defined by x2 — xfi 0, Y R and

/ — the projection on the x2-axis ; /* (@x) has support x2 > 0, which is

not an analytic subset of R, hence/* (&x) cannot be coherent!)

In this chapter, we consider only complex analytic spaces, separated
and having a countable basis of open sets.

4.1. Stein spaces

Let (X, @x) be an analytic space, and K a subset of X ; we denote, as

Definition 4.1.1. a) (X, @x) is called holomorphically convex if, for any

K compact c X, K is compact ;

b) (X, 0X) is called a Stein space if it is holomorphically convex, and if, for

any xe X, there exist sections fu ...,fp e F (Z, (9X) with /1 (x) 0, such

that x is an isolated point of the counter-image of 0 in the morphism

(Z, 0X) -> Cp defined by/j, (This last property can also by expressed

as the fact that the morphism of germs : (Z, 0X, x) (Cp, 0) defined by

fl9 ...Jv is finite).

Chapter 4.

THE FINITENESS THEOREM

A
usual by K the set
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