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sheaf of ideals defining 0,. The sheaf #’ is coherent by the Oka-Cartan
then, and .# by assumption, hence .#'/.# is coherent. Now define (X, ved Oxred)
by taking X,.; equal to X as a topological space, and Oy, g = O] N .

For a systematic treatment of reduced analytic spaces we refer to
Narasimhan [9]. We remark here that for non-reduced spaces, the decom-
position into irreducible components has no meaning, even at a point.

Example. Consider the analytic subspace X of C? defined by the ideal
# generated by x, x, and x5. It is clear that £y = (x,)if x;, # 0, hence X
is locally the one-dimensional manifold x, = 0 outside the origin. However,
J = (x,) 0 (x4, x3) which is strictly contained in (x,) at the origin so
the origin cannot be an ordinary point, in particular X is not an analytic
subspace of the manifold x, = 0. To illustrate this further, let = : X — C
be the projection of X into C defined by (x;, x,) — x;. We shall calculate
the fibers 771 (a) = X x {a} of this map for an arbitrary point a € C.

To do this, we use the characterisation of 0,-1(,; given in §1.3, exam-
ple 4: if a( = x;) # 0, and b = (a,0) we find immediately O,-1¢, = C
hence n~'(a) is a simple point. But, if a=0, b = (0,0) we find O,-1(,),=
C {x, x, }/(xy, x3) = C {x, }/(x3); hence n~* (0) is a double point.

CHAPTER 2.

DIFFERENTIAL CALCULUS ON ANALYTIC SPACES

Very little is known yet about differential operators on spaces with
singularities. We shall just give the main definitions here. Let us first con-
sider differential operators in the regular case, i.e. on manifolds. One then
usually introduces, for each point a on a complex manifold X, the vector
space Oy,,/m:*1, the jets of order k at a. Here m, denotes, as usual, the
maximal ideal in Oy ,. The jets of order k form, in a natural way, an analytic
bundle J*. A differential operator is then by definition a morphism of J*
into the trivial bundle X X C. Differential operators from bundles to bundles
are defined similarly.

This definition i1s not suitable for generalization to analytic spaces (the
collection of vector spaces Oy ,/mi*! would not define a bundle over X).
However, as noted by Grothendieck [4], if we consider, instead of the
bundle J¥, the sheaf of sections of it, we can generalize to any analytic

space X the definition above in the following way:
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Let 4 be the diagonal in X X X regarded as a closed analytic subspace,
i.e. the sheaf # of ideal defining 4 is that generated by all germs of the
form n,* f — m,* f where fis a germ on X, 7m; : X X X — X being the
projections. Similarly 4 denotes the analytic subspace of X? with sheaf of
ideals #**1 (4™ is not reduced for k > 1 even if X is). The structure sheaf
Oy on 4% is moved down to X by =, ; its direct image will be denoted
by 7y, 04y, a sheaf on X. It is made into an Ox-module by the map Oy —
15 Oy defined by 7 * 1 Oy — Oxxx.(x,0)-

Definition. (Grothendieck). A linear differential operator of order
< k is a morphism 7y, 04, — Oy, both sheaves being considered as
Ox-modules.

Let us see how this definition connects with the usual one in case X is a
manifold.

Differential operators in C". Let U be open in C" (or a coordinate
patch on a manifold). Then a differential operator in the usual sense in U is
amap Q : 0y — Oy of the form

f—) “Zkaijf

T
where a; are analytic functions in U and
o't o’

=T T
0x1 ox;

D/ f = f.

Clearly Q is C-linear and continuous. Consider the map ¢ ; Oy — 7y, Oy
defined as the composition of n,* : Oy — 0, and the natural map — w,
04y In somewhat sloppy notation,

ORS 2, DIf (<) (v =Y.

jl=k

where j! =j;!...j,!. Now if P :my, O4x) — Oy is a differential operator
in the sense of the definition just made, we get a differential operator in the
elementary sense by putting Q = P o ¢. Here q; (x) = P ((y — x)/j!) are
sections of Oy over all of U, for P maps sections of I' (U, n;,,0,)) onto
sections of I" (U, Oy).

Conversely, if Q is given, P can be constructed from the requirement
P((y — x)) = j! a;, for the germs (y — x)’, | j| < k, generate n;, O4qy as
an Oy-module. By this procedure every linear differential operator € Hom,
(14 G40, Op) defines an element of Homg¢ (0y, Op) ; hence every germ €
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Homg, (g4 040y, Oy) of a differential operator determines an element of
Homg¢ (Oy, Oy).

Lifting of differential operators, in models. We shall also describe in a
more concrete way the differential operators in a model (X, Ox) where
X = supp O0y/S, Ox = (Oy/F) l X, U being a domain of holomorphy in
C", ¥ a coherent sheaf of ideals in @. We claim that the differential opera-
tors in X correspond to those differential operators in the elementary sense
in U which map # into £, taken modulo those which map @ into .£.
Consider the following diagram where all arrows except Q, P, Py are ring
homomorphisms: '

Oy Q
lﬂ‘;\ﬂ
Ovxuvlay — 751*(941(’2 —P+ Oy
! e

P
@XXXIAX = Ty« (OA("; 5 0%

First, if P; is a given differential operator in X we may construct an
operator P in U (and hence an operator Q in the elementary sense) as
follows. To give P it is sufficient to give the sections a;, l j[ < k, onto
which (x — y)//j ! are to be mapped (see the previous section). The image
in Oy of the sections (x — y)’/j ! by P, o are certain sections b;. In view
of Theorem B of Cartan these can be lifted to sections a; of O over U. The
ambiguity in constructing a; corresponds exactly to an operator mapping
Ty O4y Into S Let us also note that the corresponding operator Q : Oy —
Oy has the claimed property that Q (4) < . In fact, if fe £, the image
of fdown in Oy, x | 4x 18 already zero, a fortiori its image in Oy is zero.
Since the diagram is commutative it follows that the image of f by Q isin .#.

Conversely, suppose that Q is given, O (#) < 4, and that P is construc-
ted from Q as before. We shall then find P, to make the diagram commuta-
tive. We clearly have to define P; g by first lifting g e 7,,, 0 4®) to my, 0 4%,

then take y» o P of the element thus obtained. To see that this definition is
allowed we have to see that ker y < ker (¥ o P). However, it is clear that
ker y is generated by the images in 7, (QA(’;J) of n,* # and n,* #. Now if
femn* £, its image in Oy is a, (x) f(x) which belongs to .# = ker . On
the other hand, if f'e n,* ., its image in @y is contained in # by our assump-
tion on Q. This proves that P, is well-defined.

Example 1. Let us determine all differential operators on the double
point (0, C {x}/ (x*)). By the principle of lifting differential operators we
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shall therefore decide when a differential operator in C,

k aJ
Q = Zaj(x)aj

(/]

maps (x?) into (x?). First we reduce the coefficients modulo (x?) so that
k aj
0 = ;(bj+cjx)a}
where b;, ¢; are complex numbers. It is clearly necessary and sufficient that

k .
Q(%)EO(modxz), k> 2.

This is equivalent to

bk=ck+bk_1=0, k>2,
hence the differential operators are precisely
62

c
bo +C0x+(b1 + C1X)-a—)—c—‘ b1 Xﬁ.

This gives a space of dimension 4 on C, with the following basis
: : 0
Q, = identity; Q, =x; Q3 = x—; Oy = — — X —
%

(this last being of order two!). Note that all the C-linear maps of the space
of dual numbers into itself are given by differential operators.

We define the composition of differential operators as in the non singular
case, by the ccmposition of the corresponding elements of Hom (O, Oy)
(we leave the details to the reader) ; if P has order <p and Q order < g,
the P Q has order < p - g. Denote by 9y, the space of germs of differential
operators of any order on X at the point x ; with this operation, Zy , is a
(non-commutative) ring.

Very little is known on these rings, except in the non-singular case.
For instance:

1) Are they “ finitely generated ” in the sense that there would exist Dy, ...,
D, € 9Dy, such that any D e Py , could be written as D =) f;, ... .
Dil “ee Dip (](il’ veey iP € (()X,x 5 il’ ceey ip = 1, veny k)?

2) Are they left or right noetherians ? (In the non-singular case, to prove
this result, it suffices to introduce the filtration defined by the order and
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to note that the associated graded ring is a ring of polynomials on
Oy, and therefore is noetherian).

The differential. If f is a holomorphic germ on an analytic space
(X, 0y) we define its differential d f as the image by n;* of the germ 7,* /' —
m*fin Ogay ;w0 A% - X being the two natural projections induced
by the projections X2 — X. Obviously n,* f — n,* f vanishes on the dia-
gonal, i.e. it belongs to the sheaf Qy of ideals of germs in @, 1, which have
restriction zero to 4 = A®). We call Qy = 7y, Oy the sheaf of ( first order)
differentials on X. Clearly we have a natural isomorphism

T % (QA(I) = (OX 6‘) QX'

In a Jocal model (V, 0y), V an analytic subset of U < C", U open, we can
also introduce the sheaf of differentials as follows. Let Q; denote the sheaf
of germs of differential 1-forms on U.

Suppose that the sheaf of ideals defining @, is generated by fi, ...,f,
Then Qy modulo the subsheaf (fi, ...,[f,) Qu + Oy (dfi, ..., df,) defines a
sheaf with support equal to ¥ which coincides with the sheaf of differentials
on V as defined above.

Vector fields. A germ & of a vector field at a point x of an analytic
space is the same as a first order homogeneous (i.e. £ (1) = 0) differential
operator at x. In other words, ¢ is defined as an 0y ,-linear map of the germs
of differential 1-forms at x into Oy .. A vector field on X is, of course, a
section of the sheaf of germs of vector fields so defined.

Example 2. Consider the analytic subspace of C? defined by the ideal
(x> — »®). Here all vector fields are linear combinations of the equivalence
classes of 2x 0/0 x +3y d/dy and 2y /0 x + 3 x* 0/dy. In particular, all
vector fields vanish at the origin. To see this, it is only necessary to observe
that a differential operator a (x, y) 6/0 x + b (x, y) 0/0 y must give a multi-
ple of x* — y* when applied to x> — y?if it shall operate on the ring C { x, v}
/(x> — y*). Hence it must satisfy 3y a(x,y) — 2xb (x,y) = 0 (mod x> —
y%). The space of these operators is spanned by the two just given,
modulo x* — y2.

If ¢ is a vector field on X, one can define, as in the non-singular case,
the “local group of automorphisms ” exp (z £) : it suffices to consider the
case of a local model, when X is a closed subspace of U open, < C”, and ¢
is the restriction of a vector field ¢ on U, and to note that exp (¢ ) leaves
X invariant. Suppose f. i. that X has an isolated singular point at x : then




exp (¢ £) must leave x invariant, and therefore £ must vanish at x (this was
the case in the preceding example).

The Zariski tangent space. The Zariski tangent space at a point x of an
analytic space X is the dual over C of M /M2 ; here M, denotes as usual
the maximal ideal of 0y .. If X is defined by the ideal .# < 0y, U an open
set in C", the tangent space may be identified with the linear variety defined
by the linear parts of all germs € .# ..

The Zariski tangent space of X,,, may be strictly contained in that of X.
For instance, if X is a double point, 9 /M > has dimension 1 over C whereas
MM > = {0} for X,,4, the corresponding simple point.

The tangent cone. The tangent cone at a point x of a local model
(X, Oy) is the algebraic variety (with nilpotents, in general) defined by the
ideal generated by the first non-vanishing homogeneous parts of the elements
in #,, # being the ideal defining X. Since the Zariski tangent space is
defined, in the local model, by the ideal spanned by the first-degree parts of
the elements of £ it is clear that it contains, and in general strictly, the
tangent cone. If £ is a vector field, £ (x) belongs to the reduced tangent cone
at x, but since the possible values of £ (x) form a linear space, it is in general
not equal to the whole cone.

Example 3. Let, again, X be the analytic subspace of C? defined by
- the ideal (x®> — y?). Then, as noted before, & (x) = O for all possible vector
fields; the tangent cone is the algebraic variety defined by the ideal (), and
the reduced tangent cone is the variety y = 0 ; finally, the Zariski tangent
space is the whole space C?, for x> — y? contains no linear terms.

CHAPTER 3.
FINITE MORPHISMS

3. 1. Local theory.

As elsewhere in these notes, we denote by C { xy, ..., x,, } the ring of
convergent power series in # variables xq, ..., x, First, we recall the so-called
“ Weierstrass preparation theorem ”. ’

Theorem 3.1.1. (Spih, Riickert). Given @®eC { xy,...,x, }, Wwith
@ (0, ..., 0, x,) = x,” + (higher order terms), any feC{xy,..,x,} can
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