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for some coherent sheaf .# of ideals of Oy. An open analytic subspace of
(X, Oy) 1s just a restriction (U, Oy l U), U open in X. An analytic subspace
of an analytic space (X, 0y) is a closed analytic subspace (Y, 0y) of the open
analytic subspace (0 Y U Y, Ocyoy) of (X, Oy), provided ( YU Y is indeed
open in X, i.e. Y is locally closed in X.

Examples. The “single point ” (0, C) is an analytic subspace of the
“ double point ” (0, C {x}/(xz)), but not conversely. The double point is,
however, a closed analytic subspace of, e.g., (C, 0;). A “point” of an
analytic space will always mean a single point embedded in (X, 0 ) by means
of a map (0, C) — (X, 0y).

1.3. Operations on analytic spaces.

In this section we shall write X for the analytic space (X, 0).

a) Product. By a general definition in the theory of categories, a pro-
duct of two analytic spaces X, X' is a triple (Z,n,n ") where Z is an analytic
space and n : Z - X,n’ : Z - X' are two morphisms with the following
property:

Given any analytic space Y and any pair f: Y- X,f : Y- X' of
morphisms there exists a unique morphism g : ¥ - Zsuchthat f =mno g,
f'=7n"og.

For example, the product of C? and C?is C?*4, according to proposition
1.2.4.

“We shall see that a product of analytic spaces always exists. The unique-
ness of g clearly implies the uniqueness of the product (Z, n, ') up to
isomorphism; we denote one such Z by X x X'.

To prove that the product always exists, let us suppose first that X and
X' are special models,i.e. Xis defined by a triple (U, f, F) where U is open
in C", F is a finite-dimensional complex linear space, and f : U — F is an
analytic map; similarly for X’. We claim that the special model Z defined
by (Ux U’,f X f',Fx F')is a product. Indeed, from the description of
the morphisms into a special model provided by Proposition 1.2.5. it follows
that we have natural maps 7 : Z - X, n’': Z — X’ induced by the pro-
ections UX U - U UXx U - U’ . Also,if 1 Y—> X and f': Y - X'
are given, g : ¥ — Z is determined by
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In the general case we take X X X' as the ringed space whose topological
underlying space in the cartesian product of the underlying space of X and
X ', and whose structure sheaf is given locally by the product of local models
for X and X’. (From the uniqueness “up to isomorphism” of the product
results that these sheaves stick together in a well-determined way).

u

b) Kernel of a double arrow. If X Y is a double arrow, i.e. a pair

v

of morphisms, a kernel X’ of (u, v) is an analytic subspace of X such that
the morphisms of an arbitrary analytic space Z into X' are exactly the
morphisms /4 of Z into X such thatw o & = v o k. In other words, if i : X'—
X is the natural map of X' into X, the morphisms 4 : Z — X’ satisfy
uoioh=voioh andif a morphism g: Z — X satisfies uog =vog,
then g = i o & for some n : Z — X’. To prove the existence of the kernel

it suffices, again, to do this locally, i.e. for special models. If X is defined by

(U,f, F) and Y by (V, g, G) we may (perhaps, after restricting U) extend
u and v to maps 4, o : U —» E where E denotes the complex linear space of
which V is an open subset. The kernel is then defined by the triple

(U.f x (@—5), FxE).

It follows from the Proposition 1.2.5. that this special model satisfies the
universal property of kernels.

t

Example 1. The kernel of C = C is the simple point {0}, t denoting the

aat 1

identity of C.

t

Example 2. 'The kernel of C 3 Cis {0} counted as a double point.
t+12
c) Fiber product. I u:X — Sand v:Y — S are given morphisms of
analytic spaces, the fiber product X x Y of X and Y over S is the kernel
of the double arrow
X x Yv_—’;, S
where 7 : X X ¥ — X and n': X X ¥ — Y are the maps defined by the
product. Note that when S is a simple point, X X , ¥ = X X Y.
One may also introduce the category of analytic spaces over S. Its

objects are morphisms u : X — S of an analytic space X onto S and its
morphisms are morphisms f : X — Y such that the diagram
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is commutative. The product in this category, i.e. the object satisfying the
universal property given above for the product X X Y, is then exactly the
fiber product X x , Y. If S is a point, we have the category of analytic
spaces.

Example 3. 1f U and V are open subspaces of an analytic space X, the
open subspace UnV is isomorphic to Ux,V. We may thus define, in general,
the intersection of two analytic subspaces X’ — X and X” — X of X to be
the fiber product X'x X",

Example 4. 1f ¢ : Y - X is a morphism of analytic spaces and a € X
a point, i.e. amap a : (0, C) » X we may consider the space Y (a) = Yxya.
It 1s natural to call this the inverse image of ¢ under ¢ and to denote it by
¢~ ! (a); its underlying space is exactly ¢3! (a).

If o (b) = a, then Oy, ,is Oy , taken modulo the image under ' : Ox ,—
— Oy , of the maximal ideal in Oy ,.

Example 5. The pull-back of a linear bundle £ over X byamap ¥ - X
is exactly Yx4F.

1.4. Relations between reduced and non-reduced spaces.

We shall first characterize those analytic spaces which are reduced.

Proposition 1.4.1. A analytic space (X, Oy) is reduced if and only if
Ox . has no nilpotent element for x arbitrary in X.

Proof. The necessity of the condition is obvious for 0y can be considered
as a submodule of @y if (X, Oy) is reduced.

Conversely, if 0 , has no nilpotent elements, we shall prove that in
any local model (V, 0y,) for (X, O), a germ g at a € V' which vanishes on V
belongs to the ideal .# defining ¢,. The Nullstellensatz implies that g* e .#,
if k is large enough. But it is then clear that g e 4, if 0y, ,/F, is free from
nilpolent elements.

Given an analytic space (X, 0x) we can associate to it a reduced space
in the following way. Let 4", be the ideal in @y , consisting of all nilpotent
elements (the nil-radical of 0). Then A" = U4, is a coherent sheaf by the
Oka-Cartan theorem, for in a local model (V, 0y) for (X, Ox) we have
Ny = (F'|F)y where F' is the sheaf of germs vanishing on V' and # the
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