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It should be noted that a morphism may be bijective and bicontinuous
and still fail to be an isomorphism. As an example we consider the map
t — (t%,¢%) of X = C into the space Y of all pairs (x,y) satisfying x> — y?
= 0. This is a bijective and bicontinuous morphism, but its inverse ¥ is no
morphism since Y* f ¢ Oy o if f(t) = .

Real analytic sets are not as well behaved as complex ones. To illustrate
this we consider “ Cartan’s umbrella ” which is the subset of R* defined by
the equation z (x? + y?) — x> = 0. Its intersection with the plane z =1
has an isolated double point at (0, 0, 1) and so it has a stick (the z-axis)
joining the rest of the “umbrella ” at the origin. Here the Oka-Cartan
theorem fails. Indeed, suppose that the sheaf .# of germs of real-analytic
functions vanishing on the umbrella were generated by sections sy, ..., s, €
I (U, #) over some neighborhood U of the origin. Then, denoting by
fis - .., [, the corresponding real-analytic functions in U, we find (using a
complexification and the Nullstellensatz for principal ideals) that every f; is
a multiple of z(x* 4 »*) — x> for it can easily be seen that this polynomial
defines in the complex domain an irreducible germ at the origin. Hence the
germ in ¢ defined by the coordinate function x at a point (0, 0, z), z # O,
cannot be a linear combination of Sy, . .., S, which is a contradiction.

1.2.  Definition of general analytic spaces.

Let U be an open subset of C" (or R”) and let .# be an arbitrary coherent
sheaf of ideals in @y, the sheaf on U of germs of holomorphic (or real-
analytic) functions. Then V = supp 0y/.# is an analytic subset of U. The
restriction of Oy/# to V will be denoted by 0y,. It is, in general, not a sub-
sheaf of %). The definition of a general analytic space will be based on
local models (V, Oy) of the type just constructed. Note that a model (V, 0,
is of the previously considered reduced type if and only if .# is the sheaf of
all germs of holomorphic functions vanishing on V. In the general case the
set V' does not determine the local model; one has to specify the structure
sheaf.

Before proceeding to the formal definitions we shall look at a few
examples.

Example 1. Let U = C, J the sheaf of ideals generated by x?2. Here
V= {0} and Oy, = C {x}/(x*) (C{x} denotes the space of converging
power series in the variable x). Thus 0y , is the space of “ dual numbers
representable as a - b ¢ where a, b e C and ¢* = 0, ¢ being the class of x.
Evidently 0y, , cannot be a subring of the continuous functions on {O} The
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only prime ideal of 0y 4 is that generated by ¢, hence the Krull dimension
of Oy, 15 0. (Recall that the Krull dimension of a commutative ring A is the
supremum of all numbers & such that there exists a strictly increasing chain

pO Cpl s Cpk
of prime ideals p;.)

Example 2. Let V be the subspace of C* defined by the requirement

that M (x) = (1 3%) be nilpotent. It can easily be seen that ¥ can be defined
by

(1) det M(x) =tr M(x) =0
and as well by
(2) M(x)* = 0.

Let .# and #' denote the sheaves of ideals defined by (1) and (2), respec-
tively. Explicitly this means that # is generated by X1+ X4y X X4 — Xy X3
and #' by x;% + X, X3, x5 (x; + x,), x5 (6 + X4), x5 x5 + x,2 It can be
seen easily that 4’ < £ but this inclusion is strict since the generators of #’
are all of the second degree. Thus the two ideals provide two different
structure sheaves on the same set V.

Example 3. Let us note here some less pleasant properties of real local
models. Take, for example, U = R?, and let .# be the sheaf of ideals genera-
ted by x*+yp?. Then ¥={0} and 0y o = R {x,y}/(x* + y?). Here {0} and
(x,y) are prime ideals so the Krull dimension of Oy , is at least 1 (in fact it
is 1) and therefore not equal to the geometric dimension of ¥ as in the
complex example above.

To give the definition of a general analytic space we first introduce that
of a ringed space:

Definition 1.2.1. A C-ringed space is a pair (X, 0x) where X is a topo-
logical space and Oy is a sheaf of local C-algebras. (This means that Oy , are
local algebras for x € X arbitrary; all algebras are assumed to be commuta-
tive and with units; furthermore Oy ,/m, is assumed to be isomorphic to
C where m, is the maximal ideal of 0y ,.)

Definition 1.2.2. A morphism
¢ (X,0x) — (Y,0y)

of one C-ringed space into another is a pair ¢ = (¢, @') where o : X - Y
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is a continuous map, and @' : @ (0y) = Oy is a morphism of sheaves of C-
algebras (morphisms of algebras are always assumed to be unitary).
R-ringed spaces and their morphisms are of course defined similarly.
Let fe I' (U, Oy) be a section of a C-ringed space (X, Ox) over an open

set U = X. We may then define the value f'(x) of f at a point x € U as fL €
Oy . taken modulo m,. Since Oy /M, = C, f(x) is a complex number.

Example 4. The values f(x) of f do not determine f completely. In the
example

({0}, C{x}/x%)

we considered earlier, the sections are given by dual numbers a -+ b ¢, and
since 1, = (&), we get £ (0) = a. Hence one has to consider also “ higher
order terms ” to determine f.

If ¢ : A —» Bis a unitary homomorphism of local C-algebras it follows
that ¢ (m (4)) = m (B), m (4) denoting the maximal ideal of 4; in other
words, the homomorphism is local. To see this, let us note that ¢ =" (m (B))
is an ideal of 4 and that ¢ induces an injective (in fact bijective) map of
Alp~ (m(B)) into B/m(B) = C, hence ¢~ ' (m (B)) is either all of 4 or a
maximal ideal in 4, but the first possibility is ruled out by the condition
@ (1) = 1. It therefore follows that ¢~ (m (B)) = m(4), hence m (B)
> ¢ (m (4)). A consequence of this is that a morphism (¢,, @*) : (X, Oy) —
— (Y, 0y) of ringed spaces preserves the values of the sections, in symbols

(*) o' (f) (%) = f(@o (%),

if xe X and fis a section of Oy over some open set containing ¢, (x).
Thus @' and ¢, are related, but our example “ the double point ” shows
that ¢ is not in general determined by ¢@,:

Example 5. Let X be the C-ringed space ({0}, C{x}/(x?)), and let
Y = (" regarded as a C-ringed space (with the sheaf 0, of germs of holo-
morphic functions). Let (¢,, ¢') be a morphism of X into Y with ¢ (0) = 0,
say. Then ¢! is a homomorphism.

9t C{yy, ) o C{x ).

Let us express @' (f) as a(f) + e b(f) (see the examplel). Since the maximal |
ideal of C {x}/(x?) is (¢), the value of @X(f) is a(f). From (*) it follows that |

a(f) = ¢' (/)0) =£(0) = 93 (f). |
Thus ¢, determines the “ zero order term ” of ¢*(f)(0). As to the proper-
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ties of b (f), it follows from the multiplication rule ¢* = 0 that

b(fg) =f(@b(g) +9(0)b (f),

hence that b is a tangent vector, or derivation, at O e C".

It is clear what the restriction of a ringed space (X, 0) to an open sub-
set U of X should mean: it is the ringed space (U, 0| U). The following
definition therefore makes sense.

Defintion 1.2.3. (Grothendieck [4]). A C-analytic space is a C-ringed
space (X, Oy) where every point x € X has an open neighborhood U such
that the restriction of (X, 0y) to U is isomorphic (in the sense of C-ringed
spaces) to a model (defined at the beginning of Section 1.2.). A morphism of
analytic spaces is a morphism in the sense of ringed spaces.

We shall determine the morphisms of (X, 0y) into (Y, 0y) in two impor-
tant special cases, viz. when (X, O0y) is arbitrary and (Y, 0y) is either C" or

defined by the vanishing of finitely many analytic functions in an open set
in C".

Proposition 1.2.4. The morphisms of a C-analytic space (X, 0y) into
C" can be identified in a natural way with I" (X, 0x)" (or I (X, 0%)).

Proof. Given a morphism ¢ = (@,, @) of (X, Oy) into C" we shall
construct an n-tuple T ¢ = (f;, . .., f,) of sections of (.

To define T we proceed as follows. Let x e X. Recall that ¢! maps
Ocn, potx) into Oy . Define (f}), € Ox , as the image under @' of the germ
at @q(x) of the coordinate function y; in C". Somewhat less precisely,
f; = @* (). This defines f; € I' (X, Ox) and hence T.

T is injective. For T ¢ = Ty means that

ol
@C"&o(x) — (QX,x

and
@Cn,lll()(x) —l-//—l> (OX,x

agree on the germs of the coordinate functions. Since in particular the
values of the sections are preserved, i.e. ¢'and ' are the identities modulo
the respective maximal ideals, the values of the coordinates at ¢, (x) and
¥, (x) must agree, hence ¢, = V. Furthermore, since @' and y' are homo-
morphisms, they agree on all polynomials. But the polynomials form a
dense set in Ocn, ,o(x) and Oy, is separated (for the Krull topology) in
virtue of the Krull theorem (see Appendix). Finally ' and y/* are continuous
maps since @ (M (Ocn, po(x))) = M (Ox ;). Now if two continuous maps
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from a topological space to a separated topological space coincide on a dense
subset, then they are equal. Hence T is injective.

T is surjective. Forif (f; ..., f,) € I' (X, 0x)"is given we first define ¢, :
X > C" by ¢ (x) = (f; (x), ..., fo (x)) (recall that f(x) is the equlvalence
class of f, modulo m (Oy ,)). Then we may define

Ocrpoir 2 Ox,x

first on the constants by the requirement that ¢* (1) = 1 ; then on the germs
of the coordinates by putting ¢' (y ;) = f; ; next on the polynomials by the
multiplicative property of homomorphisms and finally, by uniform conti-
nuity, in all of Ocn, ,ox)- (Note that we have again used the fact that
Oy . 1s separated in the last step).

Before the next proposition we introduce the notion of special model.
A special model (V, 0y) is a model (see the beginning of this section) where
the ideal .# is generated by the components of a vector-valued analytic
function f: U — F where U is open in C" and F is a finite-dimensional
complex Unear space. Here ¥ is the set of zeros of f'and @ is the restriction
of Oy/F to its own support.

Proposition 1.2.5. Let (X, 0y) be an arbitrary analytic space and
(Y, Oy) a special model defined by the vanishing of a vector-valued analytic
function g, : U — G. Then there is a bijection between the morphisms
¢ (X, Ox) = (Y, 0y) and those morphisms ¥ : (X, Oy) — (U, 0y) which
satisfy g oy = 0, where g = (g,, g") : (U, Op) = (G, 0;) is the morphism
of analytic spaces defined by g,.

The proof will be left as an exercise to the reader.

On the other hand, the morphisms (X, Oyx) — (U, 0y) are obviously
these morphisms (X, 0y) - C" such that ¢, (X) < U; this fact, combined
with propositions 1.2.4. and 1.2.5. gives the description of the morphisms:
(X, Ox) — (special model).

We end this section with the definition of analytic subspace. First we
state

Definition. 1.2.6. An analytic coherent sheaf on an analytic space
(X, Oy) is a sheaf & of Oy_ modules such that every x € X has an open
neighborhood U over which there exists an exact sequence

0% U-0% | U>ZF | U-O0.

Definition. 1.2.7. A closed analytic subspace of an analytic space
(X, Oy) is aringed space (Y, Oy) where Y = supp (05/.#) and Oy = 0y 5 l Y




for some coherent sheaf .# of ideals of Oy. An open analytic subspace of
(X, Oy) 1s just a restriction (U, Oy l U), U open in X. An analytic subspace
of an analytic space (X, 0y) is a closed analytic subspace (Y, 0y) of the open
analytic subspace (0 Y U Y, Ocyoy) of (X, Oy), provided ( YU Y is indeed
open in X, i.e. Y is locally closed in X.

Examples. The “single point ” (0, C) is an analytic subspace of the
“ double point ” (0, C {x}/(xz)), but not conversely. The double point is,
however, a closed analytic subspace of, e.g., (C, 0;). A “point” of an
analytic space will always mean a single point embedded in (X, 0 ) by means
of a map (0, C) — (X, 0y).

1.3. Operations on analytic spaces.

In this section we shall write X for the analytic space (X, 0).

a) Product. By a general definition in the theory of categories, a pro-
duct of two analytic spaces X, X' is a triple (Z,n,n ") where Z is an analytic
space and n : Z - X,n’ : Z - X' are two morphisms with the following
property:

Given any analytic space Y and any pair f: Y- X,f : Y- X' of
morphisms there exists a unique morphism g : ¥ - Zsuchthat f =mno g,
f'=7n"og.

For example, the product of C? and C?is C?*4, according to proposition
1.2.4.

“We shall see that a product of analytic spaces always exists. The unique-
ness of g clearly implies the uniqueness of the product (Z, n, ') up to
isomorphism; we denote one such Z by X x X'.

To prove that the product always exists, let us suppose first that X and
X' are special models,i.e. Xis defined by a triple (U, f, F) where U is open
in C", F is a finite-dimensional complex linear space, and f : U — F is an
analytic map; similarly for X’. We claim that the special model Z defined
by (Ux U’,f X f',Fx F')is a product. Indeed, from the description of
the morphisms into a special model provided by Proposition 1.2.5. it follows
that we have natural maps 7 : Z - X, n’': Z — X’ induced by the pro-
ections UX U - U UXx U - U’ . Also,if 1 Y—> X and f': Y - X'
are given, g : ¥ — Z is determined by

27X U N

UxU'.
f‘\‘XI__)UI/
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