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Preuve : 11 suffit de se rappeler que & est associé au U-fibré principal Gy
par la représentation 1’ de U, et d’appliquer la formule trouvée au § 4.

. r . r 4 J * J
Convention d’écriture: On écrit seulement — o au lieu d\e' TGy (w3),
de sorte que la formule précédente devient

g* (c(GIU)) = [T(L—ep).

Exemple :

Reprenons PC" (cf. §1), pour lequel on sait que ag = x, — Xy, & > 1,
donc ¢* (¢ (PC") = [] (1+x;—x,). Considérons C"** comme fibré vec-

a>1
toriel { sur un point a. En composant ¢ : U, ;/T — PC" avec ’application

constante s : PC" — aq, on obtient ’application constante r : U,, /T — a.
D’aprés la remarque 2) du §4, s*(c (£) )s’écrit [ [ (1 —x,). Done [[(1—x;) = 1
i=1

dans 4 = H* (U,, /T; Z), puisque ¢ ({) = 1. D’ou l'identité [[ (X —x;) =
= X" dans I’anneau des polyndmes en X a coefficients dans 4. En substi-
tuant 1 + x; & X, on obtient ¢* (¢ (PC")) = (I1+x,)". Onaé =& @ ¢,
avec &’ de rang 1, puisque ¢ est associé a un U, X U, — fibré principal par
1/, et & n’est autre que r* {, c’est-a-dire par construction y. Donc x; =
= g*(t), ou t engendre H? (PC";Z). Comme ¢* est injectif en vertu du
principe de clivage, on en tire ¢ (PC") = (1+41)".
On trouvera de profondes applications de la proposition dans [4].

APPENDICE: le principe de clivage

Soit £ un fibré vectoriel complexe de rang » sur un espace connexe X.
Considérons I'espace P (£) des droites contenues dans les fibres de &, ainsi
que la projection ¢ : P (£) — X induite par xn : E (&) — X.

Alors:

1) g*¢ contient le sous-fibré 1 de rang 1, déterminé par les couples
(d,x)e P (&) X E(&) avec x e d, de sorte que g*é ~ A @ &'

2) ¢* : H* (X) - H* (P (&)) est injectif pour les coefficients entiers.

Pour prouver 2), considérons le produit tensoriel externe ¢& @ N sur
X x PC* k = n, ou 5 est le fibré vectoriel canonique de rang 1 sur PC*.
Si (E®n)o est le complémentaire de la section nulle, on a une application
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f:E@mo—>P (£) associant & x ® z la droite passant par xz dans & Le
diagramme

(f@n)o P (<)
nxmn' q

v , !

X x PC* —X

est évidemment commutatif. On va montrer que (po (n X7'))* est injectif,
ce qui impliquera 2) en vertu de la relation f* o ¢* = (po (n xn')). Ecrivons
la suite exacte de Gysin du fibré vectoriel & (Q) n:

, mult. par (mxn')*
H ™" (X xPCY——— H (X x PCH

2 (Eg M)
— H' (E®n), » H72" 1 (X x PCY

Comme H* (X xPCY) ~ H* (X) [t]/t**! en vertu de la formule de Kiinneth
(C’est ici que les coefficients entiers jouent un réle) et p* applique H' (X)
identiquement sur les constantes de degré total i dans H* (X) [¢]/t**!, on
doit donc montrer que ces derniéres ne sont pas divisibles par y (& (Q) 1), en
utilisant 1’exactitude de la suite ci-dessus. Ecrivons yx (& @n) = aq, +
+a,_ 1t + ...+ apt" avec a;e€ H**9(X). Si x est un point de X, alors
E@n|xxPC*~ C"@nxn®..®n par naturalité¢ de la classe
d’Euler, Pinjection i:x X PC*— X x PC* vérifiei* y (E g n) = x (1@
@...®Dn) = t", puisque X () = ¢t par définition. Mais i* (a;) = 0 pour
J >0 et i*(ay) = ay, donc a, = 1. Cela implique la non divisibilité¢ en
question.

En faisant subir a & la méme opération qu’a &, et ainsi de suite, on
obtient:

—

si D (&) désigne I’espace des drapeaux de &, formé des suites ordénnées de n
droites linéairement indépendantes dans les fibres de &, et g : D (&) - X
la projection induite par celle de £, alors:

1) g*¢ =~ @ A, avec rang A; = 1;

i=1

2) ¢* : H*(X) > H* (D (&) est injectif pour les coefficients entiers.

Remarques :

1) D (&) est homotopiquement équivalent a ’espace DU () des suites
ordonnées de n droites orthogonales dans les fibres de &, relativement & un
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produit scalaire quelconque dans &, paramétré par les fibres. Si P est le
U,-fibré principal formé par les bases orthonormées de &, alors DU () =
= E (P)/T, avec

2) Le principe de clivage reste valable pour les fibrés vectoriels réels,
~ a condition de remplacer les coefficients entiers par Z,. En effet, dans la
démonstration ci-dessus, on doit remplacer PC* par PR* et la formule de
Kiinneth ne reste juste que pour les coefficients Z,. (Rappelons que
H'(PR*; Z) ~ Z, pour iimpair < k).
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