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Preuve : Il suffit de se rappeler que £J est associé au U-fibré principal G v

par la représentation iJ de U, et d'appliquer la formule trouvée au § 4.

Convention d'écriture: On écrit seulement — ctJR au lieu de tGt (co„),

de sorte que la formule précédente devient

q* (c (G/ [/)) na-4).
Exemple :

Reprenons PC" (cf. §1), pour lequel on sait que xa — xu a > 1,

donc q*(c(PCn)) Considérons C"+1 comme fibré vec-
a> 1

toriel C sur un point a. En composant q : Un+ 1/T -» PC" avec l'application
constante s : PC" -» a, on obtient l'application constante r : Un+ 1/T a.

D'après la remarque 2) du §4, ,s*(c (Q s'écrit J^[ (1 — xt). Donc [^(1 — xt) 1

i— 1

dans A H* (Un+ JT; Z), puisque c (Q 1. D'où l'identité J"| (Z—x,)
Xn dans l'anneau des polynômes en X à coefficients dans A. En substituant

1 + xt à X, on obtient q* (c(PCn)) (1+Xj)". On a £ © £",
avec de rang 1, puisque £ est associé à un U1 X — fibré principal par
iJ, et n'est autre que r* c'est-à-dire par construction y. Donc xx

q* (t), où t engendre H2 (PC"; Z). Comme g* est injectif en vertu du
principe de clivage, on en tire c(PC") (1 + 0".

On trouvera de profondes applications de la proposition dans [4].

Appendice : le principe de clivage

Soit £ un fibré vectoriel complexe de rang n sur un espace connexe X.
Considérons l'espace P (<!;) des droites contenues dans les fibres de £, ainsi
que la projection q : P (£) -» X induite par n : E (£) X.

Alors :

1) q*Ç contient le sous-fibré X de rang 1, déterminé par les couples
(d, x) e P (£) x E (£) avec x e d, de sorte que q*Ç œ X © + ;

2) q* : ET* (Z) H* (P (£)) est injectif pour les coefficients entiers.

Pour prouver 2), considérons le produit tensoriel externe £ 0 q sur
X x PCfc, k ^ n, où q est le fibré vectoriel canonique de rang 1 sur PC/c.
Si (£®P)o est le complémentaire de la section nulle, on a une application
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/ : (Ç®rj)0 -» P (£) associant à x ® z la droite passant par xz dans £. Le
diagramme

(£®>0o ~

71 X 71

i
X X PCk >X

est évidemment commutatif. On va montrer que (po (71X71'))* est injectif,
ce qui impliquera 2) en vertu de la relation/* o q* (po (71 X7ü')). Ecrivons
la suite exacte de Gysin du fibré vectoriel Ç® rj:

mult, par (71x7t')*
Hl'"2n (X x PC*) > H1 (X X PCk) >

X«®*)
/ — 2n + l /xa T>i~^k\>Hl(Ç®rj)0 -> Hl~2n + 1(X xPCk)

Comme 22* (XxPC*) « 22* (X) [t]/tk+1 en vertu delà formule de Künneth
(c'est ici que les coefficients entiers jouent un rôle) et p* applique H1 (X)
identiquement sur les constantes de degré total i dans 22* (X) [t]/tk+1, on
doit donc montrer que ces dernières ne sont pas divisibles par x (£®*7)> en
utilisant l'exactitude de la suite ci-dessus. Ecrivons x (£®*7) an +
+ an_1 t + + a0tn avec at e 222(n-l)(X). Si x est un point de X, alors

f (g) 771 x X PCk & Cn ® q & rj ® ® rj, par naturalité de la classe

d'Euler, l'injection i : x X PCk ->Ix PCk vérifie z* x (£ ® *7) X 0?©
©...©77) P, puisque X(77) t par définition. Mais z* (ö7) 0 pour

7 > 0 et z* (û0) <z0, donc a0 1. Cela implique la non divisibilité en

question.
En faisant subir à £' la même opération qu'à £, et ainsi de suite, on

obtient:

si D (f) désigne l'espace des drapeaux de £, formé des suites ordonnées de n

droites linéairement indépendantes dans les fibres de £, et q : D (£) -» X
la projection induite par celle de f, alors:

1) p*£ ^ © Ai avec rang At 1 ;
/ 1

2) #* : ET* (X) ET* (2) (£)) est injectif pour les coefficients entiers.

Remarques :

1) D (£) est homotopiquement équivalent à l'espace DU (£) des suites

ordonnées de n droites orthogonales dans les fibres de £, relativement à un



— 315 —

produit scalaire quelconque dans £, paramétré par les fibres. Si P est le

Un-fibré principal formé par les bases orthonormées de £, alors DU(Ç)
E (P)/T, avec

2) Le principe de clivage reste valable pour les fibrés vectoriels réels,
à condition de remplacer les coefficients entiers par Z2. En effet, dans la
démonstration ci-dessus, on doit remplacer PCk par PRk et la formule de

Kiinneth ne reste juste que pour les coefficients Z2. (Rappelons que
H1 (PRk; Z) » Z2 pour i impair < k).
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